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Abstract 

Disk arrays provide the raw storage throughput needed to balance rapidly increasing pro- 

cessor performance. Unfortunately, many important, I/O-intensive applications have serial 

I/O workloads that do not benefit from array parallelism. The performance of a single disk 

remains a bottleneck on overall performance for these applications. In this dissertation, I 

present aggressive, proactive mechanisms that tailor file-system resource management to 

the needs of I/O-intensive applications. In particular, I will show how to use application- 

disclosed access patterns (hints) to expose and exploit I/O parallelism, and to dynamically 

allocate file buffers among three competing demands: prefetching hinted blocks, caching 

hinted blocks for reuse, and caching recently used data for unhinted accesses. My 

approach estimates the impact of alternative buffer allocations on application elapsed time 

and applies run-time cost-benefit analysis to allocate buffers where they will have the 

greatest impact. I implemented TIP, an informed prefetching and caching manager, in the 

Digital UNIX operating system and measured its performance on a 175 MHz Digital 

Alpha workstation equipped with up to 10 disks running a range of applications. Informed 

prefetching on a ten-disk array reduces the wall-clock elapsed time of computational 

physics, text search, scientific visualization, relational database queries, speech recogni- 

tion, and object linking by 10-84% with an average of 63%. On a single disk, where stor- 

age parallelism is unavailable and avoiding disk accesses is most beneficial, informed 

caching reduces the elapsed time of these same applications by up to 36% with an average 

of 13% compared to informed prefetching alone. Moreover, applied to multiprogrammed, 

I/O-intensive workloads, TIP increases overall throughput. 
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Chapter 1 

Introduction 

"It is a poor craftsman who blames his tools." 
— unknown master 

Magnetic disk drives are marvels of modern engineering. Into one small, inexpensive 

package they pull together technologies from magnetics, aerodynamics, mechanical engi- 

neering, coding theory, material science, chemistry, manufacturing, integrated circuits, 

signal processing, control theory, electrical engineering, thermodynamics, and many more 

to store over a billion bits in a square inch of disk surface, any of which may be accessed 

in about 10 milliseconds. Disk drives are such effective data-storage devices that, in this 

data-hungry world, the aggregate disk-storage capacity shipped is growing at an average 

rate of 99% per year [IDC96]. And yet, disks are often the target of complaints that they 

are too slow and that too much time is wasted waiting for them. 

Although disks are fast by a human time scale, they are mechanical devices and purely 

electronic processors can perform millions of operations in the time it takes them to com- 

plete a single access. Nevertheless, when organized into arrays [Salem86, Patterson88, 

Gibson92a], disks can overwhelm any processor with data. So, the problem is not that 

disks are inadequate to the task of supplying processors with data or storing the data they 

produce. The problem is that all too many processors are running software that insists on 

issuing a request and then waiting idly while a disk services it. This is a poor use of both 
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processor and disks; besides idling the processor, it idles all but one disk in an array and so 

fails to take advantage of disk-array parallelism. 

The solution is not to replace disks, it is to be smarter in using them. Workloads need 

to exploit array parallelism for storage throughput and mask access latency by initiating 

reads in advance and completing writes in the background. Master programmers could 

largely achieve these goals through careful use of existing batch and asynchronous-I/O 

interfaces. But, not all authors of important applications are also masters of systems pro- 

gramming. In this dissertation, I show how operating systems can take full advantage of 

secondary storage technology and free programmers from the burden of carefully orches- 

trating their disk accesses to achieve good performance. 

Researchers have already shown that write buffering, which requires no programmer 

intervention, can mask write latency and accumulate multiple writes for parallelism. In a 

similar manner, aggressive parallel prefetching could mask latency and exploit array par- 

allelism for reads if only the operating system knew what to prefetch. Unfortunately, no 

known technique can predict, without assistance from the application, enough accesses far 

enough in advance to guide such aggressive prefetching. Further, attempts to prefetch 

aggressively without reliable information can waste large amounts of disk and cache 

resources and they risk hurting, not helping, performance. However, no matter how ran- 

dom and unpredictable accesses may appear to the operating system, they are often quite 

predictable within the application. 

I propose that applications take advantage of this predictability to disclose knowledge 

of future file reads in hints to the operating system which then uses them to guide aggres- 

sive parallel prefetching. In the short term, and for the purposes of this dissertation, pro- 

grammers must annotate applications to give hints by hand. However, I will argue that 

such annotation is preferable to explicit programmer I/O management for both master and 

naive programmers. First, it is easier than adding either explicit parallelism or asynchro- 

nous accesses. Second, it only requires programmers to disclose information about how 

their applications behave and does not require programmers to posses intimate configura- 

tion and performance details of the system running the application to obtain good perfor- 

mance. Third, because these system-specific details vary from one system to the next 

whereas application behavior does not, hints are more portable than explicit I/O manage- 
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ment. And fourth, explicit I/O ties down memory and disk resources whereas hints 

enhance global resource management. In the long term, I believe that compilers and other 

automatic tools will be able to generate hints without programmer intervention. Indeed, 

researchers have already demonstrated that this is possible for some applications 

[Mowry96]. 

With enough hints and a large enough array, parallel prefetching can virtually elimi- 

nate application stalls for access completion. But, hints enable other operating system I/O 

optimizations that can reduce the size and therefore cost of the array needed to achieve a 

given level of performance, or can improve performance when an array is not available. 

Specifically, informed by hints, an operating system can deliver four primary benefits: 

1. informed caching to hold on to useful blocks and outperform LRU caching indepen- 

dent of prefetching; 

2. informed clustering of multiple accesses into one larger access; 

3. informed disk management that better schedules accesses to increase access effi- 

ciency; and, of course, 

4. informed prefetching to parallelize the read request stream and mask access latency. 

At the same time, not all accesses may be hinted. Some applications may not give 

hints about all of their reads, and some may not give any hints at all. These accesses 

depend on traditional LRU caching for performance. In fact, all of the above optimizations 

require cache buffers either to initiate disk accesses or to hold on to cached data. A system 

that takes advantage of hints for all of these optimizations while preserving an LRU cache 

for unhinted accesses needs a mechanism for allocating buffers among these competing 

demands for all of the processes running on the system. 

It is my thesis that many important, I/O-bound applications can provide accurate hints 

about their future accesses, that operating system prefetching and caching according to 

these hints can substantially reduce application wall-clock elapsed time, and that run-time 

cost-benefit analysis can be the basis of effective resource management that balances the 

use of cache buffers for all of these competing demands. 
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To support these claims, I first survey in Chapter 2 the many approaches to improving 

I/O performance. I find that asynchrony to mask latency coupled with parallelism to 

exploit disk array throughput can provide the scalable I/O performance needed to balance 

rapidly increasing processor performance. I go on to argue that, for software engineering, 

application portability, and global resource management reasons, annotating applications 

to give hints is a good way to add asynchrony and parallelism to serial, I/O-intensive 

applications. 

In Chapter 3, I argue for a specific kind of hints that disclose knowledge of future 

requests and contrast such hints with ones that give advice about what the operating sys- 

tem should do. After defining a disclosure hint interface, I develop three techniques for 

annotating applications to give hints. I go on to show how to apply these techniques to 

annotate a broad suite of six important I/O-intensive applications that includes: Davidson 

computational physics, XDataSlice 3D scientific visualization, Gnuld object code linker, 

Sphinx speech recognition, Agrep text search, and two queries to the Postgres relational 

database. This chapter proves the first claim of my thesis. 

In Chapter 4,1 develop a framework for resource management based on cost-benefit 

analysis that includes three key components: locally-computable estimates of the cost of 

ejecting a block from the cache and the benefit of using a buffer to initiate an I/O; a com- 

mon currency for the expression of these estimates that ensures they are comparable at a 

global level; and an allocation algorithm that uses the estimates for prefetching and cache 

management. In a nutshell, the algorithm ejects the lowest-cost block and reallocates its 

buffer to fetch a block from disk when the estimated benefit of the fetch exceeds the esti- 

mated cost of the ejection. 

In Chapter 5,1 describe my implementation, called TIP, of cost-benefit resource man- 

agement. In Chapter 6,1 evaluate TIP performance and find that: 

1. informed prefetching from an array can virtually eHminate stalls for hinted accesses 

and reduce application elapsed time by as much as 84%; 

2. informed caching, clustering, and disk management are most beneficial when band- 

width is limited, for example on a single disk, and can reduce elapsed time by as 

much as 36% compared to prefetching alone; and, 
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3. the combination increases throughput for both single and multiprogrammed applica- 

tions across array sizes. 

The results show that TIP can use run-time cost-benefit analysis to manage prefetching 

and caching according to hints and substantially reduce elapsed time. Thus, the results 

prove the second and third claims of my thesis. 

In Chapter 7,1 explore TIP performance in greater depth and argue that the cost-bene- 

fit resource management framework is robust to changes in system parameters. I also 

point to opportunities to extend the framework and other areas for future work. 

Together, these chapters present the following five primary contributions of this dis- 

sertation: 

1. the identification of disclosure hints as a mechanism for communicating application 

knowledge about future requests to a lower level of software, and especially for com- 

municating knowledge of future file accesses to the operating system; 

2. three techniques for annotating applications with disclosure hints about their future, 

and a demonstration of their use to annotate six important, I/O-intensive application; 

3. a framework for resource management based on run-time application of cost-benefit 

analysis; 

4. estimates expressed in the common currency required by the cost-benefit framework 

for the benefits of prefetching and clustering, and the costs of ejecting a block that a 

hint indicates will be reused or that resides in the LRU queue; and, 

5. an implementation, TIP, of the cost-benefit framework in a file buffer cache manager 

and a demonstration that this system reduces elapsed time for all six of the annotated 

applications. 
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Chapter 2 

Asynchrony + Throughput = Low Latency 

Because economic forces mandate a position for disk drives in the memory hierarchy 

of modern computer systems, the long mechanical access latencies for data stored on disks 

are a drag on the performance of I/O-intensive applications. Even high-performance disks 

have access latencies of 10 milliseconds or more. In that time, a modern processor can 

execute millions of instructions. And, as shown in Figure 2.1, the trend is for this perfor- 

mance disparity to grow, not shrink. The key implication, as Amdahl's Law tells us 

[Amdahl67], is that reductions in elapsed time due to increasing processor performance 

will ultimately be limited by the ever-larger portion of an application's elapsed time that 

will be spent waiting for disk accesses to complete. How can secondary storage perfor- 

mance be increased so that it doesn't become the bottleneck on overall performance? 

Unfortunately, replacing disk drives in the storage hierarchy with something faster is 

not economically viable. Although disks are substantially slower than DRAM, they are 

also much cheaper. And, they are much faster than optical disk jukeboxes or tape libraries, 

although more expensive. Because the cost and performance differences between disk- 

drive storage and its neighbors above and below in the hierarchy are measured in orders of 

magnitude, the disk's position in the hierarchy is secure. 

The growing performance disparity between processors and disks requires a solution 

to secondary storage performance that can scale with time. Redundant Arrays of Inexpen- 

sive Disks (RAID) were proposed to be just such a scalable solution [Patterson88, 

Gibson92a]. Because arrays of any size could be built, disk arrays do provide a scalable 
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Figure 2.1. Processor and disk performance trends. Although disk data transfer rates are increasing at a 
dramatic 40% per year, mechanical constraints have limited the growth in the number of random accesses 
per second a disk can perform to about 8% per year [Grochowski96]. Neither is enough to keep up with CPU 
performance which is increasing at about 58% per year [Hennessy96]. Setting the relative performance of 
each to 1.0 in 1989, this graph shows how the difference in performance growth rates leads to a growing 
disparity between processor and disk performance. There is also a growing performance gap between disk 
transfer rates and disk access rates which makes it increasingly advantageous to transfer ever-larger chunks 
of data and to minimize seeks. 

amount of raw secondary-storage throughput. Unfortunately, as shown in Figure 2.2, 

many applications do not take advantage of that potential throughput. Just as single- 

threaded programs cannot exploit the computing power of a parallel processor, so serial 

I/O workloads cannot in general exploit the I/O throughput of a disk array. Consequently, 

disk arrays will not be a complete solution until mechanisms are found for parallelizing 

serial HO workloads to exploit array parallelism. 

Parallelism is just one workload characteristic that affects the performance of disk- 

based secondary storage. For the purposes of this dissertation, I observe that disk arrays 

provide adequate, scalable performance, and ask the question: how can I/O workloads be 

improved to take full advantage of the hardware that already exists? In this dissertation, I 

argue that applications can disclose their future accesses in hints that the file system can 

use for informed prefetching, caching, clustering, and disk management. In this chapter, I 

explore the many possible alternative solutions and argue that my solution, if feasible, is 

preferred to all others. In the remaining chapters, I will show that my solution is in fact 

both feasible and effective. 
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Figure 2.2. Elapsed time vs. array size. This graph shows elapsed time on multi-disk arrays as a fraction of 
elapsed time on a single disk for a suite of I/O-intensive applications that includes: Davidson computational 
physics, XDataSlice 3-D scientific visualization, Gnuld object code linker, Sphinx speech recognition, 
Agrep text search, and two queries to the Postgres relational database. These benchmarks are described in 
detail in Chapter 3. Davidson reads a 16-MByte dataset sequentially so sequential readahead can take 
advantage of the array for parallel transfer. But, none of the other applications obtains more than a 20% 
reduction in elapsed time from even a ten-disk array because their workloads are not parallel and so cannot 
exploit array parallelism. 

I start this chapter with a review of disk hardware and the very particular performance 

characteristics of disks and disk arrays. I identify the ASAP virtues of disk workloads that 

increase performance: avoidance, sequentiality, asynchrony, and parallelism. I then sur- 

vey existing techniques for enhancing each of the ASAP virtues and evaluate the potential 

for further enhancements that could lead to a long-term scalable improvement in second- 

ary storage performance. I find that although increases in all four virtues are possible, 

asynchronous accesses coupled with parallelism in the form of aggressive prefetching 

offers the greatest opportunity to increase performance. Unfortunately, aggressive 

prefetching requires knowledge of what to prefetch. This fact leads me to propose applica- 

tion hints as a solution. I conclude this chapter with a discussion of the many advantages 

of this approach and a review of related work. 

2.1 Disk drive performance characteristics 

Disk drives consist of a stack of flat disks or platters coated with magnetic material. 

Each side of each disk has a dedicated read/write head mounted on an arm that swings 

back and forth over the surface to position the head on any one of the thousands of con- 

centric tracks of data. Each track is divided into a number, perhaps 50 to 100, of sectors 
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which each typically store 512 bytes of data. The sectors define the smallest unit of data 

that may be read or written. The file system running in the computer hosting the disk often 

organizes these sectors into larger units called blocks which typically contain 8 or 16 sec- 

tors each. 

In most drives, there is one data channel that can read or write data via only one head 

at a time. The nth track on each surface are together called a cylinder. The arms for all sur- 

faces move as a unit under the control of a single actuator so that all heads are positioned 

in the same cylinder. The configuration is very much like an audio turntable and an LP 

record except that there are several platters in a disk drive and disk tracks are concentric 

rings instead of a continuous spiral. 

The time to access data is the sum of the time to move the head to the desired track 

(the seek time), the time for the requested data to rotate under the head (rotational delay), 

and the time to read the requested data off the disk which is the same as the time it takes 

for all the data to pass under the head (the transfer time). High-performance 3.5" disks 

today have an average seek time of 8.0 msec, an average rotational delay of 4.1 msec (half 

of a full rotation at 7200 rpm), and a transfer time for an 8 KByte block of 0.1 to 0.06 

msec depending on whether the data is stored on the inner track, the outer track, or one in 

between. 

The most important consequence of disk geometry is a large performance bias in favor 

of sequential over random accesses. Sequential accesses stream data from consecutive 

sectors on the disk surface and maximize utilization of the disk's data channel. Random or 

non-sequential accesses suffer seek and rotational delays during which the channel trans- 

fers no useful data. Sequential access of 8 KByte blocks is about an order of magnitude 

faster than random access. The difference is greater for smaller blocks. Thus, reposition- 

ing delays, which reduce channel utilization, should be kept as short and as infrequent as 

possible. 

The bias in favor of sequential access is increasing. Channel data rates, which are a 

function of the rotational speed of the disk and the linear bit density within a track, are 

limited only by the speed of the channel electronics which is increasing about 40% per 

year [Grochowski96]. In contrast, accesses per second, which are largely determined by 

mechanical   constraints,   are   increasing   at   a   rate   of  only   about   8%   per   year 
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[Grochowski96]. Figure 2.1 shows the impact of these different growth rates on the rela- 

tive performance of sequential vs. random accesses. Even sequential access is not increas- 

ing as fast as processor performance, but for actual disk performance to keep pace with 

even the increase in channel rates, workloads will have to become ever more sequential. 

The advent of redundant disk arrays (RAID) [Patterson88, Gibson92a, RAB96], has 

added a new dimension to I/O subsystem performance, namely parallelism. In disk arrays, 

data is striped across the disks in the array by first grouping disk blocks into stripe units, 

which are typically about 64 KBytes in size, and then assigning these stripe units to phys- 

ical disks in a round-robin fashion. The stripes assigned in one round over the disks are 

together called a stripe. Redundancy is most often achieved by reserving one stripe unit in 

each stripe to store the bit-by-bit XOR or parity of the other stripe units in the same stripe. 

When a stripe unit is lost, its data is the XOR of the remaining stripe units. There are many 

subtle variations on this theme that have different reliability and performance characteris- 

tics. In general, however, taking maximal advantage of the multiple disks in an array 

requires that all disks be utilized simultaneously. To first approximation, if only a quarter 

of the disks are utilized at a time then the subsystem is delivering only a quarter of its 

potential bandwidth. 

One special optimization results from the way redundant information is maintained in 

most arrays. To update the parity when new data is written to a single stripe unit, the old 

data must be read, XOR'd with the new data, the result XOR'd with the old parity, and the 

resulting new parity written. Thus, a single write turns into two reads and two writes, 

albeit on two different disks. However, if an entire stripe is written at once, then the old 

data and parity need not be read; it is sufficient to compute the all new parity across the 

new data. Instead of four operations per stripe unit, this only requires one write of each 

data stripe unit plus a write of the parity stripe unit. Most often, blocks across a stripe are 

sequentially numbered, so writes that span a full stripe take advantage of this large-write 

optimization. Thus, the advent of RAID increases the desirability of large sequential 

writes which can span an entire stripe. 

Array utilization is as workload-dependent as channel utilization. Workloads that con- 

sist of large requests for a substantial fraction of a full stripe across the array successfully 

utilize most of the available bandwidth with parallel transfer of data from multiple disks in 
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the array. Scientific applications processing large datasets often have such a workload. On 

the other hand, workloads that consist of multiple, independent, concurrent requests can 

also achieve high array utilization. Because data is striped across the array, independent 

accesses are likely to be randomly distributed over the disks in the array, and so a large 

number of outstanding requests is likely to utilize a large number of disks in an array. 

Transaction processing systems that are concurrently processing many independent trans- 

actions often have such a concurrent workload. The problem, as shown in Figure 2.2, is 

that many I/O-intensive applications are written as single-threaded programs that never 

have more than one modest-sized request outstanding at the I/O subsystem. Such work- 

loads rarely utilize more than one disk at a time. 

As an aside, it is interesting to note that this same bias in favor of sequential access is 

beginning to appear at the next higher level of the memory hierarchy as well. Dynamic 

RAM access latencies have been decreasing only slowly. Meanwhile, new access tech- 

niques such as burst transfers and RAMbus have substantially increased sequential perfor- 

mance. Furthermore, memory interleaving emphasizes parallel transfer from main 

memory devices just as disk arrays do from secondary storage devices. It will be interest- 

ing to see how many of the techniques for improving disk performance will be applied to 

primary storage. 

2.2 ASAP: the four virtues for I/O workloads 

Many system components from the application down through software libraries, file 

systems, device interfaces, and the firmware in array controllers and storage devices them- 

selves affect the disk operations performed and therefore the performance obtained. Nev- 

ertheless, the performance characteristics of disk drives dictate that there are only four 

fundamental ways to change workloads to improve secondary storage performance: avoid 

disk accesses, increase access sequentiality, perform accesses asynchronously, and access 

more disks in parallel. The more a workload applies these strategies the more it possesses 

the four ASAP virtues for I/O workloads. 

1. Avoidance. Data needs satisfied without a disk accesses are unaffected by disk per- 

formance. As a secondary effect, reducing the number of accesses required to trans- 

fer a given amount of data reduces both host and drive CPU overheads for request- 
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processing which may itself reduce application elapsed time. File buffer caches are a 

common mechanism for avoiding accesses. 

2. Sequentiality. Sequential accesses maximize disk data channel utilization. Next best 

is to minimize seek and rotational delays and therefore the time that data channel is 

not utilized. For example, the Berkeley Fast File System (FFS) stores files from the 

same directory in the same group of neighboring cylinders to reduce seek distances 

[McKusick84]. 

3. Asynchrony. Asynchronous accesses mask disk latency by allowing computation to 

continue while disk operations complete. Buffered writes and readahead are com- 

mon examples of such asynchronous accesses. 

4. Parallelism. Taking advantage of multiple disks through parallel transfer or multiple 

concurrent requests is a relatively recent innovation. Beyond disk-array architecture 

itself, relatively little effort has been devoted to increasing the parallelism of disk 

workloads. An exception is the Log-Structured File System (LFS) [Rosenblum92] 

which organizes multiple small writes into large writes that can take advantage of 

parallel transfer. One goal of this dissertation is to explore informed prefetching as a 

technique for taking advantage of array parallelism for reads. 

Although these are the only virtues, there are many ways to add them to workloads. In 

the next four subsections, I survey some of the mechanisms that have been proposed with 

an eye towards identifying the best opportunities for further improvement. 

2.2.1 Avoiding accesses avoids latency 

Access avoidance can start with the applications themselves. Restructuring programs 

and reorganizing file data so that data accessed together are stored together can substan- 

tially reduce the number of accesses. Techniques such as blocking and tiling regular data 

structures have been developed to store data for more efficient access [McKellar69, 

Wolfe96]. 

When applications do need to read data, the system can have an impact on how many 

accesses it takes to satisfy those requests. Organizing the data on the disk so that multiple 

small accesses may be replaced with fewer, larger accesses both avoids some accesses and 
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increases sequentiality (which will be discussed more below). Even if the same number of 

bytes is transferred in the two cases, reducing the number of accesses reduces CPU access 

overhead and request-processing delays at the drive. A simple technique for accomplish- 

ing this is to group file data into larger blocks [McKusick84] which reduces the number of 

accesses when application data requests have high spacial locality, that is, when applica- 

tions are likely to access data logically near data recently accessed in the same file. Simi- 

larly, reading multiple blocks in a single cluster or extent [Peacock88, McVoy91] can 

reduce the number of accesses. 

Another approach is to focus on avoiding metadata accesses which can be a substantial 

portion of the total workload, especially when there are accesses to many small files. For 

example, the Log-Structured File System (LFS) avoids some synchronous metadata writes 

by appending new data followed by the updated metadata [Rosenblum92]. Because the 

appends are sequential, LFS also enables more clustered writes and even the RAID 5 

large-write optimization. Greg Ganger has shown how to embed inodes in directories to 

avoid some metadata accesses and how to co-locate multiple small files in the same direc- 

tory with their metadata so that a single access can read all the metadata and user data for 

multiple files [Ganger97]. Again, these techniques also increase workload sequentiality. 

On the write side, buffering written data and delaying the write to disk can avoid some 

write accesses because data may be over-written or deleted before the disk writes occur 

[Baker91, Kistler93]. This is particularly useful when an application is appending data to a 

file with small writes. Because file systems usually write entire blocks as a unit even when 

only a few bytes are dirty, coalescing multiple, small, application writes into a single full- 

block disk write can decrease the number of bytes written as well as the number of 

accesses. Buffering writes is also useful for avoiding writes altogether for short-lived, 

temporary files that are soon deleted. But, the primary benefit of buffering writes, as will 

be discussed shortly, is that it adds asynchrony to write accesses. 

The most common and direct mechanism for avoiding disk accesses is caching which 

holds data in memory for fast access if needed in the future. When a cache manager 

chooses to continue holding some block in preference to another that it ejects, it is effec- 

tively predicting that the held block will be accessed before the ejected one. Thus, cache 

management is a game of predicting the future. Most current systems use a simple, his- 
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tory-based mechanism for choosing what to cache called the Least-Recently-Used (LRU) 

algorithm [Mattson70]. When a buffer is needed, LRU ejects the block that has not been 

accessed for the longest time. This heuristic has proven quite effective for general work- 

loads which often have high temporal locality, that is, for which recently accessed blocks 

tend to be reaccessed again soon. 

There are access patterns, such as repeated sequential access to a file larger than the 

cache, for which LRU fails to cache any blocks. In contrast, the Most-Recently-Used 

(MRU) algorithm, which ejects the block just accessed, takes full advantage of the cache 

for repeated accesses. Other workloads only access data once and would not benefit from 

caching no matter which algorithm is used. Some researchers have explored ways to iden- 

tify different sets of blocks that will be accessed with different patterns and then to apply 

the appropriate algorithm to each set. For example, Kim Körner proposed analyzing traces 

of file activity to correlate programs with their access patterns to files in particular directo- 

ries or to files whose names end with a particular extension [Korner90]. For example, an 

assembler typically reads a file in the Vtmp' directory and then deletes it, so there is no 

point in caching any blocks that it reads from that directory. On the other hand, the C lan- 

guage preprocessor reads files ending in '.h' sequentially, and these files tend to be reac- 

cessed by the C preprocessor when the next file is compiled, so these files should be 

cached with the MRU algorithm. Korner's approach was to analyze traces off-line to gen- 

erate access pattern rules which are then given as hints to a remote file server, although it 

is not hard to imagine using such hints in the local cache as well. 

More recently, Pei Cao et al. proposed that applications generate their own hints or 

advice about which caching policies to apply to which blocks [Cao94, Cao94a]. They 

showed how to apply the LRU algorithm at a global level to allocate buffers among pro- 

cesses while allowing each process to specify caching polices for the blocks in its parti- 

tion. In subsequent work, she and collaborators proposed using application hints for 

prefetching as well [Cao95, Cao96]. This work is closely related to the work described in 

this dissertation and is discussed in more detail in Section 2.4. 

Caches are crucial to the performance of modern systems. Hints about future requests, 

whether inferred or explicit, can make them even more effective. Could caches be made so 

effective that they could permanently relieve the I/O bottleneck? At one time, it appeared 
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1985 BSD study 1991 study 

cache size 390 KB 1 MB 2MB 4MB 8MB 16MB 7 MB 

miss ratio 49.2% 36.6% 31.2% 28.0% 26.2% 25.0% 41.4% 

Table 2.1. Comparison of caching performance in 1985 and 1991. The numbers in this table are drawn 
from [Ousterhout85] and [Baker91]. The 1985 tracing study of the UNIX 4.2 BSD file system predicted 
cache performance for a range of cache sizes assuming a 30 second flush back policy for writes. The 1991 
study measured cache performance on a number of workstations running Sprite. The cache size varied 
dynamically, but averaged 7 MBytes. The diminishing returns from increasing cache size are evident in the 
1985 results. Also striking is the difference between the predicted and measured performance of a large 
cache. 

that by increasing cache size, caches could virtually ehminate slow synchronous data 

reads [Ousterhout89]. But, for caches to compensate for the growing disparity between 

processor and disk performance, their miss ratios will have to drop proportionately so that 

an ever-smaller proportion of data accesses actually suffer the full latency of a disk read. 

Is such improvement likely? 

Table 2.1 compares the performance predicted for a variety of operating system file 

cache sizes in 1985 [Ousterhout85] with that observed in 1991 [Baker91] by a group at 

Berkeley. The first observation, based on the 1985 data, is that increasing the size of an 

already large cache does not reduce the miss ratio much. Some data sets just don't cache 

well, either because they are too large or because they are accessed infrequently, or only 

once. In fact, the situation gets worse through time as the 1991 data shows. Because data 

sets are growing, it is necessary to increase the size of the cache just to maintain miss 

ratios. This is common experience for anyone who has upgraded to a new version of some 

software package; there is an ever-increasing amount of data to be processed. Further- 

more, so much data is accessed infrequently, or even only once, that even a large, opti- 

mally-managed cache would not completely compensate for high disk-access latencies. 

Essentially, caches would have to become comparable in size to secondary storage for 

them to ehminate I/O performance as a bottleneck. 

2.2.2 Increasing sequentiality increases channel utilization 

A fully sequential workload optimizes disk performance because it has 100% channel 

utilization (the channel is transferring data for 100% of the disk service time). The closer 

workloads can come to this ideal, the less time they will waste on positioning delays, and 

the greater the disk performance they will achieve. 
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There are only two basic techniques for increasing workload sequentiality. First, file 

blocks may be allocated to physical disk blocks in such a way that file accesses end up 

being sequential on the disk. Alternatively, taking block allocation as a given, requests 

may be re-ordered to maximize sequentiality. In practice, there are four ways to apply 

these basic techniques: storing data so that both the write and subsequent reads are largely 

sequential; profiling data usage patterns and then moving the data so that subsequent 

accesses have higher sequentiality; taking allocation as a given, but trying to schedule 

accesses to maximize sequentiality; and, two-stage techniques in which, data is written 

with high sequentiality now, and later asynchronously moved to a permanent location. I 

will discuss these approaches in turn. 

Because many applications access files sequentially, a common policy is to write logi- 

cally contiguous blocks sequentially on disk. Achieving such sequentiality can be difficult 

in practice because storage is continually allocated and de-allocated in varying size 

chunks which eventually fragments available storage into short sequential runs which 

make allocating new, long sequential runs impossible. To put a lower bound on the length 

of an individual sequential run, many systems allocate space in fixed sized blocks. If less 

than a whole block is needed, the unused portion of the block is left empty. Larger blocks 

ensure greater sequentiality (less external fragmentation) at the cost of more wasted space 

(internal fragmentation). Smaller blocks make the opposite trade-off. The Berkeley FFS 

tried to have the best of both worlds by subdividing whole file blocks into fragments when 

needed to recapture lost space [McKusick84]. An alternative is the dynamic solution 

adopted by Microsoft for its MS-DOS file system: periodically run a defragmentation util- 

ity that moves blocks around to form new, long sequential runs of free space 

[Microsoft93]. 

Larger blocks increase sequentiality for reasons beyond a reduction in fragmentation. 

At first glance, it may appear that sequential accesses to a large number of small blocks 

and to a small number of large blocks would have the same sequentiality. But, for writes, 

the smallest delay between requests can cause the disk to miss the beginning of the next 

sector which adds the latency of a full rotation of the disk, perhaps 10 msec, to the service 

time for the request. Reads do not suffer this problem on modern disks which perform 

sequential readahead into buffers internal to the drive. However, when other accesses are 



18 CHAPTER 2 

interleaved with either reads or writes, larger blocks and clusters of blocks cause the unit 

of interleaving to be larger, which reduces the number of seeks among the interleaved 

access streams, and thereby increases the sequentiality of the workload experienced by the 

disk. Consequently, mechanisms such as LFS and Ganger's embedded inodes and 

grouped files which facilitate larger and clustered accesses also serve to increase the 

sequentiality of disk accesses. 

Files are often accessed sequentiality, but multiple files in the same directory are also 

often accessed together. When space is available, FFS stores files in the same directory in 

the same disk neighborhood known as a cylinder group. This does not guarantee sequenti- 

ality, but it does decrease seek distances when multiple files are accessed. Grouping files 

goes further by tying to achieve true sequentiality for multiple small files. 

The file system does not have a monopoly on allocating storage space. The SCSI disk 

interface provides a layer of abstraction that the disk can exploit to reassign logical blocks 

to any physical block it chooses. One approach is to use a greedy algorithm that assigns 

the free block with lowest access latency given the current head position to blocks as they 

are written [Ruemmler91]. Unfortunately, this approach can leave the data in non-sequen- 

tial locations which can reduce physical sequentiality for reads. 

The Logical Disk interface extends SCSI's linear block address space to a two-dimen- 

sional space of a meta-list of lists of blocks [de Jonge93]. When the file system assigns 

blocks to the same list, it effectively is giving the disk a hint that the blocks are likely to be 

accessed sequentially. When it puts lists near each other in the meta-list, it is indicating 

that accesses to the two lists may be correlated in time. Effectively, this two-dimension 

structure abstracts the two-dimensional access performance of disks: sequential blocks are 

accessed most quickly; after that, blocks located near each other will have lower latency 

than blocks further apart. 

Recent work on Network-Attached Secure Disks (NASD) [Gibson97a] further raises 

the interface so that disks export objects, not just a space of blocks. This provides the disk 

with even more information than the two-dimensional block lists: the disk manages its 

own metadata, and knows what blocks are unused and may be reallocated. This new inter- 

face should enable new allocation optimizations at the drive level without requiring oper- 

ating system changes. 
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Block allocation is not necessarily static. I already mentioned defragmentation utilities 

that move blocks around to increase sequentiality. But such defraggers are almost an after- 

thought. Some researchers have explicitly regarded block allocation as a two-stage pro- 

cess: allocate short-term storage for high sequentiality and low latency now, and later 

move the data to free space and/or minimize latency for anticipated future access. LFS 

could be viewed as falling in this category with the log providing low-latency, sequential 

writes in the short term, and the segment cleaner performing the second-stage reallocation 

to a long-term home. There are many other examples, although most are implemented 

below the file system in the storage subsystem and are aimed at avoiding the high latency 

parity-update reads and writes. Examples include HP Autoraid which initially writes to 

mirrored storage and later migrates data in large chunks to a RAID 5 arrays to reduce the 

space overhead of redundancy information and provide higher, parallel bandwidth for sub- 

sequent reads [Wilkes96]. Parity-logging is a technique for initially logging parity updates 

with sequential writes and later truncating the log, applying the updates to a RAID 5 array, 

but taking advantage of multiple writes to the same region of the array to avoid multiple 

overwrites, to coalesce neighboring writes to achieve the large-write optimization, or just 

to increase the locality and therefore decrease the latency of more isolated updates 

[Stodolsky93]. Other researchers have looked at dynamically building new stripes to 

avoid parity updates [Mogi94]. 

Most of the foregoing techniques use static policies to govern storage reallocation. 

Autoraid goes a step further and allocates mirrored or RAID 5 storage depending on the 

rate of updates to the blocks. But, there are a number of techniques for reallocating blocks, 

not according to static policies, but according to dynamic usage patterns. For example, 

systems can take advantage of the fact that the distribution of accesses tends to be highly 

skewed to a small portion of the data stored on a disk. By profiling data accesses, disk sub- 

systems [Vongsathorn90, Akyürek93, Akyürek93a] or file systems [Staelin90] can 

migrate or replicate [Akyürek92] the most active blocks to the center of the disk to reduce 

seek distances. 

The second approach to increasing sequentiality is to reorder accesses to reduce posi- 

tioning delays. Scheduling requests to minimize average access time is itself an old and 

well-developed    field    of    study    [Denning67,    Geist87,    Seltzer90,    Jacobson91, 
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Worthington94]. But such scheduling techniques are only applicable if there are multiple 

requests to schedule. If there is only one request outstanding at the drive, there is little that 

can be done to reduce the service time for that request. Effectively, the more work out- 

standing at a disk, the greater the opportunity for efficient scheduling and the higher the 

effective sequentially or locality of the resulting workload for the disk arm. 

How, then, can the system generate more outstanding requests and so improve the 

scheduling opportunities? On the write side, multiple requests may be buffered for asyn- 

chronous writes which may be scheduled in any order. FFS does this when it buffers data 

for up to 30 seconds as described above. Some have advocated buffering thousands of 

writes [Seltzer90]. The problem comes on the read side. Because many applications only 

issue one read request at a time, there is often no opportunity to schedule reads. One solu- 

tion is issuing prefetches of additional blocks along with the read of the requested block. 

In this way, asynchrony may be used to increase workload sequentiality. The question 

becomes, how to generate these asynchronous requests. I will shortly address this question 

when I take up the general discussion of asynchrony as a mechanism for increasing I/O 

performance. 

Increasing workload sequentiality increases disk channel utilization and therefore disk 

performance. It can even increase array utilization if accesses are sequential enough to 

take advantage of parallel transfer from the many disks in an array. But, can increasing 

sequentiality provide the parallelism needed to relieve the I/O bottleneck? The Log-Struc- 

tured File System could, with an appropriately sized write buffer, make nearly all writes 

sequential. But, reads and writes don't necessarily occur in the same order which implies 

that data would have to be reallocated between the write and the subsequent read. And, 

when the same data is read in a different order on different occasions, the data would have 

to be reallocated between reads. Sometimes, as in the case of application launches men- 

tioned above, it is possible to do this reorganization. But, in general, there may not be 

enough time to reallocate the data even if it were known in what order to lay the data out 

on disk. It is not possible to make all accesses, both reads and writes, sequential. A mech- 

anism is needed to convert serial, non-sequential accesses into parallel accesses that can 

take advantage of array parallelism. 
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2.2.3 Asynchrony masks latency 

Asynchrony can mask long disk latencies. If an application doesn't have to wait for 

disk accesses to complete then it doesn't matter that the accesses have high latency. 

Buffered write-behind is an effective means for adding asynchrony to the write work- 

load. Written data are temporarily stored in main memory, the application continues pro- 

cessing, and data are flushed to disk in the background. A pitfall of this approach is that 

the data are not in persistent storage when the application continues and so may be lost in 

the event of a failure. But, battery-backed RAM or uninterruptable power supplies can 

protect from data loss due to power failure, and write-protecting the data cache can protect 

against software failures such as operating-system scribble bugs and crashes as shown by 

the Rio file system [Chen96]. For maximal security, the write buffer could be constructed 

with a solid-state disk made of flash memory. 

Prefetching data into the cache is the read-equivalent of write buffering. In its simplest 

form, file-system prefetching is based on the prevalence of sequential file access. Large 

file blocks implicitly prefetch unrequested data in the latter portions of the block. More 

explicitly, the file system can "readahead" sequential blocks of a file. But, because not all 

accesses are sequential, and because it can hurt performance to prefetch unused data, it is 

advantageous to scale the depth of prefetching according to the length of a run of sequen- 

tial accesses [Smith78, Smith85]. In practice, SunOS prefetches one block ahead when the 

last two blocks referenced were sequential, or for clustered I/Os, it prefetches the next 

cluster when the last cluster was read sequentially [McVoy91]. Digital UNIX takes a more 

aggressive approach and prefetches ahead roughly the same number of blocks that have 

been read sequentially up to a maximum of 8 clusters of 8 blocks. 

David Kotz has looked at detecting and prefetching for strided access patterns within a 

file [Kotz90, Kotz91, Kotz93]. This work primarily focussed on the parallel computing 

domain, and there is more about it in the next section. 

Many researchers have explored ways to discover access patterns among files. For 

example Griffieon and Appleton observe the sequence of files opened and build a proba- 

bility graph that records how often file B is referenced soon after file A [Griffioen93, 

Griffioen94, Griffioen95, Griffioen96]. Then, when A is referenced, if the likelihood that 

B will be referenced is above a threshold, the system prefetches file B. The system also 
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prefetches any other files that are accessed soon after A with a frequency above the thresh- 

old. Using this technique, they were able to initiate prefetches for many files in advance of 

their use. 

Duchamp and collaborators observe the sequence of files, including other programs, 

that a program accesses during the course of a single run [Tait91, Lei97]. They store the 

pattern in an access tree. Over time, the system may build up multiple pattern trees for 

each program. When the program is later run again, its sequence of accesses is compared 

to the ones stored in the access trees for the program. If a matching tree is found, then the 

system prefetches the first block of later files in the tree. The system relies on sequential 

readahead to prefetch the rest of the blocks in the file. The multiple access trees allow the 

systems to distinguish different patterns of use for the same files and prefetch for the cur- 

rently occurring pattern. 

Kroeger and Long have explored using data compression techniques to discover fre- 

quently occurring sequences of file references [Kroeger96]. When the current sequence 

matches one or more prior sequences, the system prefetches the next file in each sequence 

whose frequency of occurrence is above a threshold. 

The idea of using compression techniques for prefetching was first proposed by Vitter 

and Krishnan [Vitter91]. They and Curewitz applied the approach to page references in an 

object-oriented database [Curewitz93]. Palmer and Zdonik have also explored pattern 

matching for database references [Palmer90, Palmer91]. But, instead of using compres- 

sion algorithms, they use an associative memory to find close matches to the current 

sequence of accesses. 

All of these approaches to prefetching have the attractive advantage of being transpar- 

ent to the user. The system simply observes accesses and, predicated on the idea that past 

access patterns are being repeated, prefetches for the current access pattern. The drawback 

of such transparent approaches is that because the predictions are not completely accurate, 

prefetches based on them cannot be too aggressive or else the performance penalty when 

the predictions are incorrect will be too high. Consequently, most tend to be conservative 

and therefore can't be scaled up to compensate for the growing processor-disk perfor- 

mance disparity. Furthermore, many applications have access patterns that appear random 

or that touch data only once, and for which such heuristic techniques are ineffective. 
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Instead of relying on the file system to guess what to prefetch, programmers can 

explicitly prefetch data with asynchronous I/O calls. In doing so, programmers take on the 

responsibility of determining how far in advance to issue requests and how many to issue 

at a time. And, they must manage the requests and the buffers they use. Thus, using asyn- 

chronous I/O can require substantial programmer effort. 

Intermediate between these two, applications can give hints about blocks they will 

access in the future [Gibson92, Patterson94, Patterson95, Cao96]. In some cases, compil- 

ers can generate such hints automatically [Mowry96]. This approach is the focus of this 

dissertation and will be discussed in some depth shortly. 

Can asynchrony continue to mask disk latency even as processor performance contin- 

ues to increase? For it to do so, three issues must be addressed. First, asynchrony is only 

effective if backed by sufficient throughput. Buffering writes only frees an application to 

continue as long as there are free buffers. An application that fills buffers faster than the 

storage subsystem can empty them will eventually run out of empty buffers and stall while 

dirty data are flushed to disk. Similarly, asynchronous reads and prefetching allow an 

application to read data without stalling only if disk reads complete before the application 

requests the data. If the application consumes data more quickly than the storage sub- 

system can deliver it, the application will eventually stall while data are fetched from disk. 

Thus, asynchrony decouples application elapsed time from disk latency, but only if it is 

paired with sufficient throughput to satisfy application demands. Or, conversely, asyn- 

chrony leverages throughput to mask latency. 

The second issue for scaling asynchrony is the number of staging buffers. For writes, 

there must be enough to hold the written data while they are being flushed to disk. As pro- 

cessor performance increases, processors will be able to write more data in the time it 

takes a disk write to complete, and therefore more buffers will be needed. If disk arrays 

are used to provide the necessary storage throughput, then, conceptually, the multiple 

disks in the array can be used to empty the multiple buffers concurrently. Roughly speak- 

ing, there need to be enough buffers to keep enough disks utilized to provide enough stor- 

age throughput to balance application throughput. A similar argument applies to read 

buffers: there must be enough of them to satisfy data demands while a fetch completes. 

Thus, the number of buffers scales with the size of array needed and therefore with the 
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size of the performance gap between processors and disks. A system that can afford the 

disks should be able to afford the much less expensive buffers, so buffer cost is not a bar- 

rier to scaling asynchrony. 

The third issue in scaling asynchrony is determining what data should be put in these 

staging buffers. The writes themselves dictate what to put in the write buffers, but, there is 

no equivalent oracle for reads. As I/O latencies grow in terms of processor cycles, asyn- 

chronous fetches and prefetches must begin ever farther in advance if they are to complete 

in time. When the processing time between requests is less than the latency of a disk 

access, reads must be initiated several requests in advance to completely mask then- 

latency. If all accesses are initiated multiple accesses in advance, then there are necessar- 

ily multiple outstanding fetches. Scaling asynchrony for writes is a simple matter of scal- 

ing the write buffer size. Scaling asynchrony for reads implies scaling the number and 

timing of the asynchronous fetches. 

Scaling the number of asynchronous reads is not trivial. For asynchronous I/O, it could 

mean additional programmer effort to retune the application for each new faster processor. 

For heuristic prefetching, the farther in advance predictions are made, the more likely they 

are to be inaccurate. As ever-greater resources are devoted to prefetching, the risk of hurt- 

ing, not helping performance increases. For prefetching to be the long-term solution 

sought, prefetching will have to become much more aggressive and more accurate. 

Prefetching has the needed scalable potential, but it requires much more accurate predic- 

tions of future accesses. 

2.2.4 Parallelizing I/O workloads increases array utilization 

Organizing disks into arrays is a fundamentally scalable approach to increasing sec- 

ondary-storage throughput. By scaling up array size, arrays can, in principle, provide 

whatever throughput is required. The problem is that this throughput is only available if 

the workload itself has sufficient parallelism to utilize the multiple disks. 

As mentioned above, scientific workloads that request large chunks of data, and there- 

fore have highly sequential workloads, can take advantage of parallel transfer from the 

array. At the other extreme, highly concurrent workloads such as transaction processing 

can take advantage of arrays for concurrent servicing of multiple small requests. But, 
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many I/O-intensive applications neither make large requests, nor are highly concurrent 

and therefore cannot fully utilize disk-array parallelism. Instead, their workloads consist 

of a serial stream of moderately-sized requests that only utilize a single disk in an array at 

a time. The array's potential throughput remains untapped and the access latency for these 

individual disk accesses dominates I/O service time. For such workloads, it is as if the I/O 

subsystem had only a single disk. 

The techniques for scaling asynchrony are also effective for generating workload par- 

allelism. Larger numbers of write-behind buffers increase the parallelism of asynchronous 

writes. Both aggressive prefetching and larger numbers of concurrent asynchronous I/O 

requests increase workload parallelism. But, as larger arrays are needed to supply the data 

needs of a single processor, these techniques must be ever more aggressively applied to 

maintain array utilization. 

Batch or vector requests provide explicit parallelism with a single system call. For 

example, Cray's UNICOS operating system supports a listio system call that initiates 

a list of distinct I/O requests [Cray93]. But, many applications are not written to support 

batch or vector processing. For these applications, taking advantage of these calls would 

require many of the same code modifications needed to support asynchronous I/O. 

There is a substantial push in the parallel computing community to support parallel file 

systems and I/O [Dibble88, Cao93, del Rosario94, Kotz94, Krieger94, Corbett95, 

Corbett96, Haskin96]. There has also been some effort in this direction in the distributed 

domain [Cabrera91, Hartman93, Lee96, Gibson97, Thekkath97]. But, parallel and distrib- 

uted computing is not the focus of this dissertation. Certainly, using parallel threads is one 

approach to generating parallel I/O. But, the issue here is generating parallel I/O for every 

processor because a single processor, even if in a parallel computer, is capable of process- 

ing data faster than a single disk can deliver it. Some applications are easily parallelized 

and can be split into more threads than there are processors. Multiprogramming multiple 

such threads on a single processor can generate needed I/O parallelism, although at the 

cost of overhead to switch among the threads. However, there are many applications that 

are not easily parallelized. Such applications would like to exploit all available threads on 

different processors to maximize processor performance. For these applications the issue 

again becomes one of how can I/O parallelism be generated for a single thread running 
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alone on a processor. Thus, although parallel and distributed computing is not the focus of 

this dissertation, the arguments and techniques developed here also have application in 

that domain. 

Prefetching has been studied specifically in the parallel domain by David Kotz who 

was perhaps the first to emphasize its importance for increasing I/O parallelism [Kotz90, 

Kotz91, Kotz93]. He explored techniques for detecting sequential and strided access pat- 

terns and prefetching in parallel for them with the goal of increasing array utilization. He 

was able to demonstrate significant reductions in elapsed time for the parallel computa- 

tions he studied. These parallel computations already had some intrinsic I/O parallelism 

because each disk had an independent processor associated with it, but the prefetching 

helped overlap I/O with computation at each node and more significantly, it allowed I/O 

to continue even when the processor was stalled at a synchronization point for the parallel 

computation. However, as was the case for the single-processor prefetching studies, the 

lack of certain knowledge about what data will be accessed limited the aggressiveness of 

the prefetching and therefore the performance gains possible. 

2.2.5 ASAP summary 

Summarizing this survey of techniques for generating workloads that improve the per- 

formance of disk-based secondary storage, we have that: 

1. avoidance, although capable of delivering substantial gains, is not a scalable solution 

to the I/O bottleneck; 

2. sequentiality maximizes the utilization of individual disks, and through buffered 

writes and LFS, it scales to multiple disks for writes, but because there is no general 

mechanism for converting random reads into sequential ones, it does not scale for 

reads; 

3. asynchrony for writes is scalable through write buffering, whereas scaling for reads 

depends on scaling either the number of outstanding asynchronous I/Os or prefetch- 

ing aggressiveness, but for both reads and writes, asynchrony must be backed by 

scalable throughput and buffer sizes; and, 
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4. parallelism that can exploit disk arrays is possible for some applications with explic- 

itly parallel I/O requests, but for serial workloads, scalable parallelism can only be 

achieved by scaling the number of asynchronous requests. 

Techniques already exist for eliminating the I/O bottleneck for writes. Writes cannot 

be completely eliminated, but buffering can make them both asynchronous and parallel. 

Asynchrony eliminates write latency, and parallelism provides throughput. Scalability is 

achieved by scaling the size of the write buffer and the disk array. 

On the other hand, no existing techniques scalably relieve the I/O bottleneck for reads. 

This survey made it clear that avoidance, sequentiality, and asynchrony cannot provide the 

necessary throughput. Parallelism, which can, must be a part of any scalable, long-term 

solution. Disk arrays already provide hardware parallelism. The challenge, then, in reliev- 

ing the I/O bottleneck for reads is adding parallelism to the read workload that can exploit 

array parallelism. 

Parallelism, whether achieved explicitly or implicitly through prefetching, is the most 

important factor in improving I/O performance. But, because avoidance reduces the num- 

ber of requests that secondary storage must service and because sequentiality increases the 

throughput of individual disks, both can reduce the degree of parallelism and therefore the 

cost of secondary storage needed to balance a given processor. Equivalently, by increasing 

the utilization of individual disk read/write channels, fewer channels, and therefore fewer 

disks, are needed to provide a given level of throughput. Thus, there is benefit in maximiz- 

ing all ASAP workload virtues. 

Unfortunately, it is not always possible to maximize all four at once. Caching, write- 

behind, prefetching, asynchronous I/O, batch requests, multiprogramming, and, more gen- 

erally, virtual memory all require memory resources. A comprehensive approach to maxi- 

mizing I/O performance should balance these competing demands to make the best use 

not just of the disk resource, but the memory resource as well. 

2.3 Disclosure hints for aggressive prefetching and I/O parallelism 

Aggressive prefetching could provide the necessary parallelism for reads just as write 

buffering does for writes. Parallel prefetches could fill prefetch buffers and allow applica- 

tions to continue computing without stall. Prefetching is usually thought of as a technique 
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Figure 2.3. Gains from prefetching. The traditional goal of file prefetching is to overlap the latency of a 
disk access with computation. Figure (a) shows that overlapping disk accesses with computation can reduce 
elapsed time by at most 50%. Much larger gains are possible when multiple prefetches are performed 
concurrently on a disk array. Such parallel prefetching can in principle eliminate all but the latency of the 
first access. 

for overlapping I/O and computation. Prefetching can certainly achieve such overlapping, 

but, as Figure 2.3 shows, prefetching in parallel can provide much greater, scalable perfor- 

mance gains than simple overlapping alone. Prefetching is better thought of as a way to 

add parallelism to a serial read workload. 

The main barrier to using prefetching for read parallelism is that the file system does 

not know what to prefetch. The problem is that, from the file system's perspective, appli- 

cation accesses can seem random and unpredictable so guessing what to prefetch is diffi- 

cult or impossible. And yet, programmers wrote applications to perform meaningful, 

purposeful tasks. Reads are predictable, just not to the file system. 

I propose using this predictability to inform the file system of future demands on it. 

Specifically, I propose that applications disclose their future accesses in hints. In this dis- 

sertation, I show, first, that applications can give such hints and, second, how the file sys- 

tem can use these hints to: 

1. improve cache performance to avoid accesses; 

2. cluster multiple accesses into one and better schedule other accesses to increase 

sequentiality; 
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3. aggressively prefetch needed data to asynchronize file reads from disk accesses; and 

4. to parallelize the read workload to exploit storage parallelism. 

But, perhaps this approach is misguided and knowledge of future accesses could be 

better exploited at user level to achieve these optimizations. Programmers could modify 

their code to issue multi-block sequential reads, multi-block batch or vector reads, multi- 

ple concurrent asynchronous I/O requests, or to spawn multiple concurrent read-issuing 

threads. Indeed, some applications already do this. However, there are at least three rea- 

sons why the hint approach is superior. 

First, modifying programs for explicit parallel I/O is challenging. Breaking a program 

into multiple threads which can generate independent I/O requests is equivalent to paral- 

lelizing the application which is known to be hard except in a few select, intrinsically par- 

allel cases. Asynchronous I/O requires code nimble enough to handle the out-of-order 

completion of any of the multiple outstanding requests which is certainly more complex 

than a programming model which only allows synchronous reads of a byte range. Further- 

more, both asynchronous I/O and batch accesses require user-level buffer management to 

reserve space for the read data and recycle the space when done with the data. Finally, 

unless accesses are already sequential, using knowledge of future accesses to generate 

sequential ones, if it is even possible, at least requires resorting accesses into some order 

other than the natural, logical one that is used by the existing code. 

In fairness, application hints too require some modifications to program. But, there is 

no need to parallelize the program, handle out-of-order requests, manage buffers, or resort 

requests into a possibly unintuitive order dictated by the location of data on disk. Pro- 

grammers can continue to use the same serial, synchronous programming model that they 

are used to. In Chapter 3,1 show that three straight-forward techniques are sufficient for 

annotating a broad range of applications to give hints. It is already possible for a compiler 

to generate some hints without programmer intervention [Mowry96] and there is a reason- 

able expectation that compiler and other techniques will eventually be able to generate 

hints for a broader range of applications automatically. 

The second, more significant, problem with explicit parallelism is that the programmer 

must scale the parallelism when the application is ported to a new system. Faster proces- 
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sors require more I/O parallelism to balance performance and I/Os need to start further in 

advance. The programmer is faced with three choices: not adapt and suffer from insuffi- 

cient parallelism or wasteful use of cache buffers; manually retune for every system con- 

figuration at potentially huge programming cost; or, write code that automatically adapts 

to each system. But, implementing such automatic adaptation can be difficult. How much 

further in advance should I/Os be initiated, how many more outstanding requests are 

needed? Few systems provide meaningful information to user-level programs about pro- 

cessor performance, disk performance, array size, memory size, network speed, etc., that 

could help determine answers to these questions. And, even if some systems do, they cer- 

tainly don't provide it in a consistent manner which itself adds to the difficulty of porting 

such an application. 

In contrast, once an application is annotated to give as many hints as it can as early as 

possible, there is no need to further modify or tune the application. It is up to the operating 

system and especially the file system to initiate I/Os and manage the cache as appropriate 

for that system. The operating system may have to be tuned for the particular system con- 

figuration, but it makes sense to localize such machine-dependent function there. In Chap- 

ters 4 and 5 of this dissertation, I will show how to use a handful of key system parameters 

to tune file-system I/O and cache management to the particular system. Once the applica- 

tion discloses its knowledge, the system can take advantage of them to scale I/O parallel- 

ism to take full advantage of that system's I/O and buffer resources. 

Finally, and most significantly, even if an application could be ported to new systems, 

explicit parallel I/O usurps operating system control of global resources by dictating how 

many and when buffers should be used for I/O and thereby cripples resource management. 

Highly parallel I/O can consume large amounts of memory and storage bandwidth 

resources. Taking buffers for I/O shrinks the pool available for virtual memory and file 

caching, so applications risk losing more to increases in paging and cache misses than 

they gain from I/O parallelism. And, they may unfairly hurt the performance of other 

applications sharing the machine. 

Resource allocations should be dynamic, varying in response to changing application 

needs and system conditions. When applications are sharing the processor, their through- 

put drops and I/O parallelism and prefetching can be scaled back. When access to a disk is 
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highly contested, caching for that disk becomes more important both to avoid queuing 

delays and to reduce the load on the disk. When data is read once and not reused, cache 

buffers can be freed for other uses. Global resource allocation is one of the central tasks of 

an operating system and explicit parallelism denies the operating system the flexibility it 

needs to balance competing resource demands and optimize global resource usage. 

Disclosure hints empower instead of cripple global resource allocation. Because the 

operating system is free to ignore hints, they impose no demands on resources. Instead, by 

providing the system with information about the future, hints enable proactive resource 

management that anticipates demands. Blocks that will be reused can be held in the cache. 

Missing blocks can be prefetched. 

In Chapter 4,1 show how to combine the new information provided by hints with other 

information about historical resource usage to manage resources and improve I/O perfor- 

mance. I develop a framework for resource management based on cost-benefit analysis 

that includes three key components. First, it uses locally-computable estimates of the cost 

(increase in I/O service time) of ejecting a block from the cache and the benefit (decrease 

in I/O service time) of using a buffer to initiate an I/O that are derived from a model of 

system performance. Second, to ensure that these local estimates are comparable at a glo- 

bal level, the framework requires that all estimates be expressed in terms of a common 

currency that relates the change in I/O service time to the amount of buffer resource used. 

Finally, the framework's allocation algorithm uses the estimates expressed in the common 

currency to balance the use of buffers for prefetching, clustering, caching according to 

hints, and caching in the LRU queue for unhinted accesses. In a nutshell, the algorithm 

ejects the block that will cost least to use its buffer to fetch a block from disk if the esti- 

mated benefit of the fetch exceeds the estimated cost of the ejection. 

2.4 Related work 

Hints are a well established, broadly applicable technique for improving system per- 

formance. Lampson reports their use in operating systems (Alto, Pilot), networking (Arpa- 

net, Ethernet), and language implementation (Smalltalk) [Lampson83]. Terry proposes 

their use for distributed systems [Terry87]. Broadly, these examples consult a possibly 

out-of-date cache as a hint to short-circuit some expensive computation or blocking event. 



32 CHAPTER 2 

An alternate class of hints are those that express one system component's advance 

knowledge of its impact on another. Perhaps the most familiar of these occurs in the form 

of policy advice from an application to the virtual-memory or file-cache modules. In these 

hints, the application recommends a resource management policy that has been statically 

or dynamically determined to improve performance for this application [Trivedi79, 

Sun88, Cao94, Cao94a]. 

In some cases this policy advice can be generated automatically from observations of 

file system activity. I already mentioned Korner's work on automatically generating cach- 

ing hints at the client for a remote file server [Korner90]. An example from parallel com- 

puting is Madhyastha's work on automatically classifying access patterns to set parallel 

file system policies [Madhyastha97]. 

In large integrated applications, detailed knowledge may be available. The database 

community has long taken advantage of this for buffer management. The buffer manager 

can use the access plan for a query to help determine the number of buffers to allocate 

[Sacco82, Chou85, Cornell89, Ng91, Chen93]. Ng, Faloutsos and Sellis's work on mar- 

ginal gains considered the question of how much benefit a query would derive from an 

additional buffer. Their work stimulated the development of my approach to cache man- 

agement. It also stimulated Chen and Roussopoulos in their work to supplement knowl- 

edge of the access plan with the history of past access patterns when the plan does not 

contain sufficient detail. 

The use of estimates of the cost of an operation have long been used to develop alloca- 

tion policies. For example, in his study of sequential prefetching [Smith78], Smith devel- 

oped estimates of the cost of prefetching a block, the cost of a demand miss, and the cost 

of the loss of cache effectiveness due to the early ejection of a block to reuse a buffer for 

prefetching. Then, based on the distribution of sequential run lengths measured in traces 

of system activity, he determined the number of blocks ahead to prefetch given that a 

sequential run already has a certain length. Although his estimates of both the distribution 

of run lengths and the cost of dedicating cache buffers for prefetching were static, he 

observed that there was some variation in the actual values over the course of the trace he 

studied. In this dissertation, I do not study heuristic readahead, but I do show how to use 

dynamic estimates of costs and benefits to guide prefetching and caching decisions. It 
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would be interesting to incorporate estimates of the benefit of heuristic, sequential 

prefetching into the TIP system described here. 

Researchers have considered a variety of rich languages for expressing and exploiting 

disclosure. One example is collective I/O [Kotz94] in which collections of processes run- 

ning on a parallel machine describe their related accesses so that the underlying I/O sub- 

system can optimize across the accesses. This is particularly useful when, for example, 

each processor is performing strided access to a matrix, but collectively they are accessing 

the matrix in its entirety. 

Another example in the parallel domain is the use of templates to specify parallel I/O 

access patterns [Parsons97]. In this approach, users specify how the system should coordi- 

nate the file accesses of multiple parallel processes. For example, the processes might 

share a common file pointer so that accesses are serialized, or the file might be broken into 

distinct segments for each process. Many different patterns are possible, but the use of the 

template to specify them means that the system can be aware of what access patterns it 

will be asked to support. 

Another example is Dynamic Sets [Steere97] in which users specify a set of files over 

which they will iterate performing some operation. The specification of a set of files dis- 

closes likely access to all files in the set. A call to iterate on the next file in the set may 

return any file in the set. This gives the underlying system the flexibility to re-order 

accesses for maximum performance. For example, already cached files can be accessed 

first while prefetching proceeds for other files. Or, in the context of a distributed system 

such as the world-wide-web, the system can initiate fetches for multiple objects and 

deliver objects to the user in the order in which they are received. 

Another example interface is an object-oriented file system implemented as library on 

top of the UNIX file system called ELFS [Grimshaw91]. ELFS has knowledge of file 

structure (e.g. 2-D matrix) and high-level file operations (e.g. FFT) that it uses for its own 

prefetching and caching operations. When users request these high-level operations, they 

in effect disclose to ELFS a large quantity of work. Although ELFS emphasizes user-level 

control over file activity, it could use its knowledge to give hints to the file system. Appli- 

cations could further help ELFS performance by disclosing their knowledge in hints to 

ELFS which could translate them into hints for the underlying file system. ELFS encapsu- 
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lates a lot of knowledge of file activity in a library, and as such it could be a good comple- 

ment to an informed prefetching and caching system. 

Relatively little work has been done on the combination of caching and prefetching. In 

one notable exception, however, Cao, Felton, Karlin and Li derive an aggressive prefetch- 

ing policy with excellent competitive performance characteristics in the context of com- 

plete knowledge of future accesses on a single disk [Cao95]. These same authors go on to 

show how to integrate prefetching according to hints into their system that exploits appli- 

cation-supplied cache management advice [Cao96] which I mentioned earlier. The hints 

they use for prefetching are very similar to the disclosure hints I advocate, although they 

supplement them with caching advice hints whereas I rely on the one type of hint for both 

caching and prefetching. But, a greater distinction between the two efforts is that Cao et 

al. studied prefetching and caching on a single disk, whereas my emphasis is on the use of 

prefetching to add parallelism to an otherwise serial workload. Recent joint work com- 

pared the two approaches and found that an adaptive approach that incorporated features 

of each worked best across array sizes [Kimbrel96]. A further distinction is the buffer 

allocation algorithms. Cao et al. propose a two-level approach that uses the LRU algo- 

rithm to allocate buffers among processes and uses a local, application-controlled manager 

for each process' buffers. My proposal is for a single unified manager that uses locally- 

generated cost and benefit estimates to find the best global allocation. A recent study com- 

pared and contrasted these two approaches [Tomkins97]. I will discuss both the prefetch- 

ing and buffer allocation comparison studies in more depth in Chapter 7. 

2.5 Conclusions 

The starting point for this chapter was the observation that because processor perfor- 

mance is increasing so much more rapidly than disk performance, secondary storage is a 

worsening bottleneck on overall system performance. Disk arrays, which provide scalable 

throughput and can balance processor performance, are only a partial solution: without 

parallel workloads that exploit array parallelism, the latency of individual single-disk 

accesses dominates storage subsystem performance. Some I/O workloads are already par- 

allel, but many fall between the extremes of large sequential accesses and highly-concur- 
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rent small ones. These workloads typically consist of a serial stream of modest-sized 

requests that run little faster on an array than they do on a single disk. 

A sufficiently parallel workload running on a large enough disk array is enough to bal- 

ance any processor. But, even though disk prices have been dropping rapidly, arrays of 

disks can still be expensive. Maximizing single-disk utilization minimizes array size and 

cost. Thus, the broad question is not just how to exploit disk arrays, but how best to maxi- 

mize the performance of disk-based secondary storage. 

After reviewing the performance characteristics of disk-based storage, I identified the 

ASAP workload virtues for high performance: avoid accesses when possible; increase 

sequentially to minimize seeks and maximize read/write channel utilization; mask latency 

with asynchrony; and maximize throughput with parallelism. Of these, only parallelism 

can scale with processor performance. However, avoidance and sequentiality can both 

reduce the size of the array needed by respectively reducing the number of requests or 

increasing the throughput of individual disks. 

Servicing a request asynchronously can mask latency for that request. But, servicing 

multiple requests asynchronously provides parallelism and therefore throughput and ulti- 

mately low latency for lots of requests. Asynchrony coupled with throughput can provide 

the I/O throughput needed to balance increasing processor performance. 

Generating multiple asynchronous writes is easy: accumulate the data in multiple buff- 

ers. Asynchronous reads are not as easy to generate. Unless programs are rewritten to 

issue explicit asynchronous I/Os, the only source of asynchronous reads is prefetching. 

The challenge in initiating multiple prefetches is determining what to prefetch. Heuristic 

techniques cannot predict what data will be needed reliably enough to fill the many empty 

prefetch buffers. 

My thesis is that many I/O-intensive applications can predict their own accesses, dis- 

close this knowledge in hints to the file system, and that the file system can take advantage 

of these hints to improve I/O performance through all four ASAP optimizations. Hints 

expose concurrency that aggressive, asynchronous prefetching can exploit with a disk 

array. Further, hints reveal data reuse that can guide cache replacement decisions. Finally, 

hints provide opportunities to cluster multiple requests into fewer larger disk accesses and 

to better schedule the disk arm to minimize seeks. 
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Unfortunately, these many potential optimizations are potential competitors. Prefetch- 

ing, caching, clustering, and queuing requests early to improve scheduling all require 

cache buffers. The challenge in implementing a system that exploits application hints is 

determining how to allocate the limited supply of cache buffers to these alternative uses to 

maximize performance. Hints enable proactive resource management that anticipates 

future demands instead of simply responding to current demands. In this dissertation, I 

will show how to balance buffer usage for prefetching versus caching and integrate this 

proactive management with traditional LRU (least-recently-used) cache management for 

unhinted accesses. 

Although I will not demonstrate it in this thesis, I believe this approach has applicabil- 

ity in the broader context of I/O that includes network transmission and tertiary storage. 

New technologies can generally increase throughput, but often fail to reduce latency espe- 

cially for small requests whose service time is dominated by factors other than simple data 

transmission. Avoiding accesses to the next lower level in the memory hierarchy always 

improves performance. Clustering smaller requests into larger ones reduces per-request 

overhead in distributed and local systems alike. Accessing remote data or a tape drive only 

increases latency and makes latency-masking asynchrony more important. Finally, paral- 

lelism increases performance whenever issuing individual requests leaves some resource 

idle. In a distributed system, multiple servers may provide an opportunity for parallelism. 

But, even parallelism in the form request pipelining can increase network and server utili- 

zation and therefore performance. 
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Chapter 3 

Disclosing I/O Requests in Hints 

This chapter presents disclosure hints, the key to my approach for reducing read 

latency and relieving the I/O bottleneck. The aggressive, proactive management strategy 

described in this dissertation depends on a reliable picture of future demands. I ask that 

applications be modified to disclose their future accesses in hints and provide the system 

with the knowledge it needs. But, not all hints are created equal, especially from a soft- 

ware engineering perspective. This chapter describes the disclosure hints that I advocate 

and explains why disclosures are preferable to advice hints. 

Hints may be a wonderful concept in theory, but to be useful in practice, applications 

must be able to generate disclosure hints. In the long term, I hope that compilers and pro- 

filers may generate reliable hints automatically. Indeed, recent work has already produced 

promising results. For example, Todd Mowry led a group that showed how compilers can 

apply memory prefetching techniques in the I/O domain [Mowry96]. But, in the short 

term, manual techniques for annotating applications to give hints remain the most power- 

ful. Section 3.3 identifies three techniques for manual hint annotation. Then, Section 3.4 

shows how to apply these techniques to annotate a broad suite of applications that includes 

text search, 3D scientific visualization, relational database queries, speech recognition, 

object code linkers, and computational physics. Using these techniques, the relational data 

base discloses half of the bytes it reads, speech recognition discloses 90% of the bytes 

read, and the other four applications disclose over 99% of bytes read. Furthermore, in 

most cases, the hints disclose hundreds to thousands of accesses at once thereby exposing 
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I/O concurrency and, as we will see in later chapters, enabling the system to add much 

needed read parallelism to these application's workloads. 

3.1 Hints that disclose 

I advocate a form of hints based on advance knowledge called disclosure 

[Patterson93]. An application discloses its future resource requirements when its hints 

describe its future requests in terms of the existing request interface. For example, a dis- 

closing hint might indicate that a particular file is going to be read sequentially four times 

in succession. Or, at a more detailed level, it might disclose a list of specific segment off- 

sets and lengths that will be read with an implied seek from the end of one segment to the 

beginning offset of the next segment. 

Disclosure hints stand in contrast to hints which give advice. For example, an advising 

hint might specify that the named file should be prefetched and cached with a caching pol- 

icy whose name is "MRU." Advice exploits a programmer's knowledge of application and 

system implementations to recommend how resources should be managed. Disclosure is 

simply a programmer revealing knowledge of the application's behavior, revealing how 

the application will use the interface that the system already exports. 

Disclosure has three advantages over advice. Together, they show that disclosure hints 

are a mechanism for passing portable optimization information across module boundaries 

without violating modularity. First, because it expresses information independent of the 

system implementation, disclosure remains correct when the application's execution envi- 

ronment, system implementation or hardware platform changes. Hints are not prefetch 

commands so they can and should be given as early as possible; it is up to the system to 

take full advantage of them. Even though the appropriate prefetching and caching policy 

might depend on the number of disks in a disk array, the amount of buffer cache available, 

or the existence of a large amount of non-volatile RAM, the hints do not need to change. 

In contrast, to give the best possible prefetching and caching advice, a programmer would 

have to be sensitive to such variations in system configurations. But, even if a programmer 

could anticipate all possible configurations today, it would be impossible to anticipate all 

future configurations. Suppose, for example, that micro-mechanical or holographic stor- 

age devices with new and unknown characteristics come into existence. How can a pro- 
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grammer today give advice on their use? Disclosure hints reveal what an application will 

do and therefore don't depend on system configuration or implementation1. As such, dis- 

closure is a mechanism for portable I/O optimizations, portable across platforms today and 

portable through time to tomorrow's platforms. 

Second, because disclosure provides the evidence for a policy decision, rather than the 

policy decision itself, it is more robust. Specifically, if the system cannot easily honor a 

particular piece of advice, there is more information in disclosure that can be used to 

choose a partial measure. For example, if there is too little free memory to cache a given 

file, advice to cache the file does not help the system decide whether it is more useful to 

cache the beginning, the end, or recently used portions of the file. Disclosures reveal 

which portions of the file will be accessed next and therefore which blocks of the file to 

cache. 

Such robustness is particularly important for global optimizations. If two processes 

advise the system to cache their file, but they don't both fit, which should the system 

cache? Should it cache all of one and none of the other? Parts of each? Which parts? Sim- 

ple advice provides inadequate information to answer these questions, whereas disclosure 

arms the system with the facts that, as we will see, allow it to make an appropriate alloca- 

tion. 

The third advantage is that disclosure conforms to software engineering principles of 

modularity because it is expressed in terms of the interface that the application later uses 

to issue its accesses; disclosure hints are expressed in terms of file names, file descriptors, 

and byte ranges, rather than inodes, cache buffers, or file blocks. Disclosure does not 

require knowledge of another module's implementation, it simply requires that one mod- 

ule disclose what invocations of the other module it will make. 

Disclosure's respect of modularity is in a sense a general statement of the first advan- 

tage: that disclosure is portable from one system implementation to another. But, it has 

more profound ramifications as well. In particular, it means that disclosure hints may be 

passed through multiple layers of software. Suppose, for example, that an application uses 

Of course, if the application's behavior is dependent on system configuration, then the hints must 
also be dependent on configuration. However, such dependencies must be known to the application writer to 
be included in the code and so in principle this knowledge may be used to give appropriate hints. 
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a math library for complex out-of-core matrix manipulations. For the application to give 

advice to the system about how to support these operations, it would need to understand 

how the library was implemented. An alternative is for the application to disclose to the 

library what library calls the application will make and for the library to translate these 

calls into file access hints which it then discloses to the system. In this way, disclosure 

hints may be passed through layers of software, transmitting optimization information 

down through all layers, without violating the modularity of these layers. Admittedly, this 

is easier for some layers to implement than others. Caches, in particular, have difficulty 

predicting far in advance which accesses will hit and which miss. Further work is needed 

both on predicting cache misses and on support in the hint interface for modules that can- 

not predict requests with total accuracy. Nevertheless, disclosure hints are already a useful 

mechanism for passing optimization information through multiple layers of software and 

in Section 3.4.5,1 will give an example of an application that does just that. 

Modularity often stands in opposition to performance because it hides implementation 

details which are important for performance. In response to this problem, researchers have 

been exploring ways for a user to influence the underlying implementation. A notable 

example is Gregor Kiczales and his work on metaobject protocols and open implementa- 

tions [Kiczales92] which allow users to influence implementation choices and so tune an 

implementation to support particular applications. 

In the operating systems research community, efforts have been focussed on moving 

functionality out of the kernel and into user space where the user can customize behavior. 

Examples of this include external pagers [Harty92], scheduler activations [Anderson92], 

and, in the extreme case, micro-kernels themselves [Accetta86, Rozier88, Engler95]. Cer- 

tainly, this approach can lead to dramatic performance gains for applications that are will- 

ing to rewrite significant chunks of the operating system. But, many application 

programmers don't wish to become systems programmers. They would prefer to focus 

their efforts on their own algorithms. Because disclosure hints only require knowledge of 

what the application itself does, they do not require new, specialized knowledge on the 

part of the programmer and so are an attractive alternative to reimplementing system code. 

A deeper problem is that when multiple applications reimplement the same system func- 

tion, global knowledge is lost along with the opportunity for global optimizations. 
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Disclosure hints offer an alternative to these efforts. I acknowledge that application 

information is helpful, even necessary, for good performance, but also appreciate the 

advantages of keeping resource allocation and system-specific tuning in the operating sys- 

tem. Ideally, applications and the system would cooperate in managing resources and opti- 

mizing performance. Disclosure hints are portable, enable global resource management, 

and do not violate modularity. 

The remainder of this chapter details the disclosure hint interface, describes three tech- 

niques for annotating applications to give hints, and shows how to apply these techniques 

to annotate a broad range of six applications that includes: Davidson computational phys- 

ics, XDataSlice 3D scientific visualization, Gnuld object code linker, Sphinx speech rec- 

ognition, Agrep text search, and two queries to the Postgres relational database. A major 

thrust of the remainder of this dissertation will be showing that a system can successfully 

optimize its behavior based on disclosure information. It is not necessary to move the bur- 

den of writing operating systems on application writers to obtain significant performance 

gains. 

3.2 The hint interface 

My dual goals in designing the hint interface for TIP, my implementation of an 

informed prefetching and caching system, were simplicity and support for the test applica- 

tions. Only three pieces of information are needed to describe UMX reads: the file, the 

byte offset to start the read, and the number of contiguous bytes read before a seek else- 

where. Disclosure hints reveal this same information in advance of the actual read. The 

order hints are given indicates the order accesses are anticipated. Conceptually, new hints 

are added to the end of a list. I could have explored richer interfaces that supported, for 

example, insertion of new hints at arbitrary locations, compact representations of strided 

accesses, concurrent hint streams with unknown interleaving, probabilistic hints that indi- 

cate data might be accessed, etc. But, the suite of applications studied did not need such 

embellishments, so I left them out. 

The programming model for giving hints includes only three rules. First, applications 

should issue hints as early as possible so that the system has as much time as possible to 

take advantage of them. Second, applications should issue as many hints as possible to 
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hint target parameter description 

TiPICLSEG /dev/tip tipio_segbuf_t * batch of <offset, length> seg- 
ments for a named file 

TIPIO_FD_SEG open file descriptor tipio_fd_segbuf_t * batch of <offset, length> seg- 
ments for an open file 

TIPIO_MFD_SEG /dev/tip tipio_mfd_segbuf_t * batch of <fd, offset, length> seg- 
ments for multiple open files 

TIPIO_CANCEL 
/dev/tip or 
open file descriptor 

null 
cancels segment at head of hint 
list; used when a hint turns out to 
be erroneous 

Table 3.1. IoctI calls in the disclosure hint interface. Disclosure hints describe future requests in the same 
terms as the existing file interface. Thus, they must specify the file, the starting offset of the access, and the 
length of the sequential access before a seek to a new offset. This information is relayed to the file system via 
ioctl system calls using one of the hints specified in this table. Hints specifying a file by name are given in 
ioctl calls to the /dev/tip pseudo-device, whereas ioctls giving hints about open files can target those files 
directly. The structures which are the parameters for some of the hints are defined in Figure 3.1. 

expose as much I/O concurrency as possible.2 Not all of the concurrency may be needed 

today, but maximizing the exposure of concurrency ensures the effectiveness of the hints 

in the future. And third, to guarantee that the system does not discount their hints as too 

inaccurate, applications should perform all accesses for which they have issued hints. If a 

hint turns out to have been incorrect, the application should issue a TTPIO_CANCEL hint as 

described below. 

In the TIP system, hints are passed to the file system via an I/O-control {ioctl) system 

call. Table 3.1 summarizes the supported calls. There are two ways to specify the file: file 

descriptor or file name. If the file is already open, then the open file descriptor can be the 

target of the ioctl call as in the TIPIO_FD_SEG hint. Alternatively, the file can be specified 

by name, in which case the target of the ioctl call is a pseudo-device named "/dev/tip" as 

in the TIPIO_SEG hint. 

Hints specify contiguous file segments with an <offset, length> couple (not all the 

bytes need be requested in a single read call). To reduce what the application must know 

before hinting, a length of 0 indicates the file will be read from the offset to the end of the 

At the limit, hint storage itself could become a problem if too many hints are given. The system 
could limit the number of outstanding hints, but a better solution might be to store the hints themselves on 
disk. None of the benchmark applications ever had more than 16,000 hints outstanding at a time, so this was 
not a problem. 
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/* contiguous file segment */ 
typedef struct tipio_seg { 

int   offset; 
int   length; 

} tipio_seg_t; 

/* batch of segments in a named file */ 
typedef struct tipio_segbuf { 

char  *path; /* file name */ 
int   nsegs; /* number of segments */ 
tipio_seg_t*seg;       /* array of segments */ 

} tipio_segbuf_t; 

/* batch of segments in an open file */ 
typedef struct tipio_fd_segbuf { 

int   nsegs; /* number of segments */ 
tipio_seg_t*seg;       /* array of segments */ 

} tipio_fd_segbuf_t; 

/* segment in a specified open file */ 
typedef struct tipio_mfd_seg { 

int   fd; /* open file descriptor */ 
off_t offset; 
off_t length; 

} tipio_mfd_seg_t; 

/* batch of segments in multiple open files */ 
typedef struct tipio_mfd_segbuf { 

int  nsegs; 
tipio_mfd_seg_t *seg;   /* array of segments */ 

} tipio_mfd_segbuf_t; 

Figure 3.1. Structure definitions for the disclosure hint interface. These structures specify the starting 
offset and length of sequential accesses to files. To reduce system call overhead, batches of hints may be 
given in one call. 

file. Thus, a hint with offset=0 and length=0 indicates a sequential read of the whole file.3 

To reduce system call overhead, a single ioctl call may deliver an ordered list of many 

such couples; the ordering in the list indicates the order of accesses. Figure 3.1 defines the 

structures which are the parameters to the ioctl that pass in these couples.4 

Finally, the TIPIO_CANCEL hint lets applications cancel hints. Some applications, even 

when trying to be precise, occasionally give incorrect hints. Specifically, applications that 

3 For historical reasons, the interface includes TIPIO_SEQ and TIPIO_FD_SEQ hints as shorthand 
for this special case of whole-file sequential read, 

4 The implemented interface differs fro 
tipio_fd_segbuf_t structure actually contains an array of segments instead of a pointer to a separate array. 

The implemented interface differs from this in several minor cosmetic ways. For example, the 
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maintain an internal cache sometimes fail to predict an internal cache hit and an antici- 

pated access never occurs. The current TIP implementation tolerates accesses for which 

no hint was ever given, but expects that all hinted accesses eventually occur in the hinted 

order. Because TIP matches accesses to hints and may only prefetch to a limited depth in 

the hint sequence, inaccurate hints risk halting prefetching. To avoid this, applications can 

cancel their erroneous hints as they discover them. 

Ideally, the system would be resilient to minor inaccuracies in the hint stream. Such 

resilience would require matching an arbitrary subsequence of the actual accesses to the 

hinted sequence, possibly with reordering. Because the entire access sequence is unknown 

ahead of time, when an access doesn't match the hint sequence, the system cannot be cer- 

tain whether the hints were inaccurate or whether the hinted access simply hadn't occurred 

yet. Such uncertainty complicates the system's task of deciding whether and what to 

prefetch. A further complication is that resilience could add undesirable ambiguity to the 

programming model if programmers became uncertain whether the system would tolerate 

their slightly inaccurate hints or not. Different system implementations might tolerate 

varying levels of inaccuracy. How can programmers know whether their hints will be 

accurate enough? The exacting requirements of the current system are at least determinis- 

tic. For all these reasons, adding resilience to inaccurate hints is difficult and remains a 

topic for further research. 

3.3 Annotation techniques 

In the future, hints may be generated automatically by a compiler, run-time analyzer, 

or other means, but for this work, applications were annotated by hand to give hints. In 

this section, I describe the three techniques used to annotate the six benchmark applica- 

tions. 

The hinting techniques range in complexity from the in-line insertion of hints where 

knowledge of future accesses becomes available to loop splitting in which application 

code is restructured to get around data dependencies that would otherwise make early 

hints hard to generate. Loop duplication is intermediate between these two in that it may 

require noticeable amounts of new code, but leaves the original code largely intact. 
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After describing the three hint techniques in abstract terms, I will go on show how to 

apply these techniques to annotate the benchmark applications. 

3.3.1 In-line hinting 

In some applications, specific access patterns are known to the programmer at certain 

points in the code. In-line hints simply disclose this information as it becomes available. 

Such hints require little or no special work to generate and consequently they often are 

added very easily to a program. 

In their simplest form, a separate in-line hint may be given in advance of individual 

read calls. Of course, for such hints to be useful they must be given well before the actual 

access; hints given immediately before the corresponding read provide no additional 

information. It is always best to give hints as early as possible. 

In-line hints that disclose multiple accesses expose I/O concurrency even when they 

are not given far enough in advance to overlap much computation with I/O. Such hints are 

possible, for example, when a program loop reads from a file with a predictable pattern. 

Before entering the loop, an in-line hint could disclose the access pattern. Such a hint does 

not give much advance warning for the first access, but it may allow the second and subse- 

quent accesses to be prefetched in parallel. Moreover, if the body of the loop contains sig- 

nificant computation, such a hint does give significant advance notice for the later 

accesses. 

Even when it is not possible to anticipate all of the accesses within a loop, it may be 

possible for an in-line hint to disclose accesses one iteration in advance. When loops 

enclose multiple accesses or significant computation, hints in-lined in the body of the loop 

can still expose I/O concurrency or at least give sufficient advance warning of impending 

accesses to overlap computation with the I/O. 

Agrep and Davidson are good examples of applications that give in-line hints. Post- 

gres also gives in-line hints for some of its accesses. 

3.3.2 Loop duplication 

Within some program loops, in-line hints may only be possible in the same iteration as 

the actual access. This often results in hints that give little advance warning and disclose 

little concurrency. Loop duplication is a technique for lifting these hints out of the enclos- 
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ing loop so that multiples of them may be given far in advance thereby giving much more 

advance warning and disclosing substantial I/O concurrency. 

In loop duplication, the control structures of the enclosing loop are duplicated in a new 

shadow loop placed before the original one. The shadow loop does not perform any of the 

file accesses of the original. Instead, the body of the shadow loop includes only those 

operations necessary to determine what the accesses of the original loop will be. As the 

accesses are determined, hints can disclose them. Using this technique, all the accesses in 

some loops may be disclosed before the start of the loop. 

Gnuld uses this technique to generate some of its hints. 

3.3.3 Loop splitting 

Loop duplication as described above is sometimes unsatisfactory for two reasons. 

First, it may lead to unacceptable overhead if the shadow loop must duplicate a significant 

amount of computation. Second, it may not be effective when, as described below, there 

are data-dependent reads within the loop body. The solution is to use loop splitting to 

avoid duplicating work and separate data-dependent accesses. 

Like loop duplication, loop splitting duplicates the original loop's control structures to 

create a second loop. But, if determining what data will be accessed requires a substantial 

amount of computation, loop splitting temporarily stores partial results generated in the 

first or top half of the split loop. After issuing hints based on the results of the first loop, 

the second or bottom half of the split loop takes advantage of the stored partial results to 

avoid the overhead of recomputing them and computes the final result. The use of tempo- 

rary storage for partial results and the modification of the original loop distinguish loop 

splitting from loop duplication. 

Sometimes a read depends on other data read within the loop body. This occurs, for 

example, when an initial read of a header determines the offset of data accessed in a sec- 

ond read. Splitting the loop body between the two accesses separates such data-dependent 

accesses from their dependencies and solves the problem that a hint for the second read is 

only possible after the first read completes. The first loop performs all the initial reads, for 

example of the headers, and stores the offsets for all of the data-dependent reads. The sec- 

ond loop refers to the stored offsets, skips the initial reads and only performs the second, 
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data-dependent reads. But, before the second loop begins, hints disclose the offsets of the 

data-dependent reads in the second loop. Not only are these hints given much further in 

advance, but, more importantly, they are given all at once thereby exposing I/O concur- 

rency. 

Postgres, Gnuld, and XDataSlice all take advantage of loop splitting to give hints. 

3.4 Annotating applications to give hints 

In this section, I describe the six applications that have served both as case studies in 

annotating applications with hints and as benchmarks for evaluating the performance ben- 

efits of informed prefetching and caching based on these hints. 

3.4.1 Agrep 

Agrep, version 2.04, a variant of the standard UNIX Grep utility, was written by Wu 

and Manber at the University of Arizona [Wu92]. It is a fast full-text pattern matching 

program that allows matching errors. Invoked in its simplest form, it opens the files speci- 

fied on its command line one at a time, in argument order, and reads each sequentially. In 

our benchmark, Agrep searches 1349 kernel source files occupying 2922 disk blocks for a 

simple string that does not occur in any of the files. 

Because the arguments to Agrep completely determine the files it will access, Agrep 

can issue hints for all accesses upon invocation. When searching data collections such as 

software source files or mail messages, hints from Agrep frequently specify hundreds of 

files too small to benefit from history-based, sequential readahead. In such cases, 

informed prefetching has the advantage of being able to prefetch across files and not just 

within a single file. 

Annotating Agrep is easy. Before searching any files, the program loops through the 

argument list and checks that each argument is a valid file name. As Figure 3.2 shows, an 

in-line hint inserted within this loop discloses the names of all the files Agrep will read. 

Adding this call requires about ten lines of code, most of which are '#include' directives 

or variable declarations. 
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foreach  arg_string  on  command  line   { 
if   arg_string names  a   file   { 

gj ^ add  arg_string  to   list   of   files   to  search; 
'•=■-     ►   hint   (arg_string,   offset=0,   length=0) ; 
££ } 

} 

Figure 3.2. In-line hints in Agrep. Before searching for a string in any file, Agrep loops over its command 
line arguments and adds those that are files to a list of files to search. It is a simple matter to insert a hint that 
the file will be searched. An offset of 0 indicates that the file will be searched from the beginning and a 
length of 0 indicates that it will be searched sequentially till the end of the file. 

3.4.2 Gnuld 

Gnuld version 2.5.2 is the Free Software Foundation's object code linker which sup- 

ports ECOFF, the default object file format under Digital UNIX. In the benchmark, Gnuld 

links the 562 object files that make up a Digital UNIX kernel. Gnuld passes over the input 

object files several times in the course of producing the output linked executable. In the 

first pass, Gnuld reads each file's primary header, a secondary header, and its symbol and 

string tables. Hints for the primary header reads are easily given by duplicating the loop 

that opens input files5. Thus, Gnuld gives hints across files just as Agrep does. The read of 

the secondary header depends on data in the primary header. It would have been possible 

to apply loop splitting to disclose these reads, but usually neither the primary nor second- 

ary headers are large, so they tend to be co-located in the same block. Thus, even though 

Gnuld doesn't hint them, the secondary-header reads usually hit in the cache. 

The secondary headers provide the location and size of the symbol and string tables 

for that file. To give hints for the table reads, the loop is split after the read of the second- 

ary header. 

After verifying that it has all the data needed to produce a fully linked executable, 

Gnuld makes a second pass over the object files to read and process debugging symbol 

information. This involves up to nine small, non-sequential reads from each file. Fortu- 

nately, the previously read symbol tables determine the addresses of these accesses. Loop 

duplication is used to generate hints for this second pass. 

During the second pass, Gnuld constructs up to five shuffle lists which specify where 

in the executable file object-file debugging information should be shuffled or copied. 

5 Thanks to Daniel Stodolsky who annotated Gnuld to give hints. 
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" foreach ECOFF segment { 
foreach input_file { 

consult load map; 
hint(input_file, offset, size); 

} 
} 

1° < .5» o 

foreach ECOFF segment { 
foreach input_file { 

consult load map; 
seek to offset in input_file; 
read size bytes from input_file; 
patch addresses; 
seek & write to output_file; 

} 
} 

Figure 3.3. Loop duplication in Gnuld. In the course of building an executable file, Gnuld constructs a 
map that indicates what data from each input file belongs where in each ECOFF segment of the output file. 
When the time comes to build the output file, Gnuld loops over the different segments and consults this map 
to read in the relevant data from each input file which it patches and writes to the appropriate destination in 
the output file. In the pseudocode above, this code in labeled as the 'original loop.' To give hints, the control 
structures of this loop are duplicated in a shadow loop which consults the same load map and discloses the 
many reads that the original loop will perform. 

When the second pass completes, Gnuld finalizes the link order of the input files, and thus 

the organization of non-debugging ECOFF segments in the executable file. As shown in 

Figure 3.3, loop duplication again serves to exploit this order information and the shuffle 

lists to give hints for the final passes. 

3.4.3 Postgres 

Postgres version 4.2 [Stonebraker86, Stonebraker90] is an extensible, object-oriented 

relational database system from the University of Caüfornia at Berkeley. In our bench- 

mark, Postgres executes a join of two relations. The outer relation contains 20,000 unin- 

dexed tuples (3.2 MByte) while the inner relation has 200,000 tuples (32 MByte) and is 

indexed (5 MByte). The benchmark suite includes two cases. In the first, 20% of the outer 

relation tuples find a match in the inner relation. In the second, 80% find a match. One 

output tuple is written sequentially for every tuple match. 

To perform the join, Postgres reads the outer relation sequentially. For each outer 

tuple, Postgres checks the inner relation's index for a matching inner tuple and, if there is 

one, reads that tuple from the inner relation. From the perspective of storage, accesses to 

the inner relation are random, defeating sequential readahead, and have poor locality, 
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foreach tuple in outer_relation { 
look for match in index of inner_relation; 
if there's a match { 

store offset of match in temp_array; 
} 
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} 
hint (inner_relation, offsets in temp_array, block_size); 
foreach tuple in outer_relation { 

if there's a match in temp_array { 
seek & read match from inner_relation; 

} 
} 

Figure 3.4. Loop splitting in Postgres. In the original loop, read from the inner relation depends on the 
index lookup in the top half of the loop. Without loop splitting, hints for these reads could only be given one- 
at-time after the index lookup. Such hints would neither give much advance warning nor expose I/O 
concurrency. Splitting the loop after the index lookup separates the lookup from the dependent inner-relation 
read. The top loop performs all the index lookups in one pass. Then, a hint discloses the offsets of all the 
inner-relation blocks that will be read in the bottom loop. 

defeating caching. Thus, most of these inner-relation accesses incur the full latency of a 

disk read. 

The inner-relation accesses depend on the result of the index lookup. Thus, as shown 

in Figure 3.4, loop splitting is used to separate the accesses and generate hints for the 

inner-relation reads6. In the top half of the split loop, Postgres reads the outer relation (dis- 

closing its sequential access), looks up each outer-relation tuple in the index (unhinted)7, 

6 Thanks to Eka Ginting who annotated Postgres to give hints. 
7 It would have been possible to further split the loop to give hints for the index, but this was not 

done for two reasons. First, the structure of the code makes splitting the index lookup difficult. The index is 
a B-tree, so to give hints for all accesses, each descent to a deeper level of the tree would have to be split into 
its own loop. The code treats the index lookup as a single step so this would require significant restructuring. 
An application written from scratch could accommodate this, but a programmer might resist modifying the 
existing code. I didn't want the benchmark applications to be overly-tuned, but instead wanted them to be a 
reasonable representation of what a programmer might actually do. The goal is to discover how well the dis- 
closure approach works without resorting to heroic efforts. The second reason is that the index's B-tree 
structure and relatively small size compared to the inner relation mean that the index accesses have fairly 
good locality and cache reasonably well. Thus, hints for these accesses would not have as great an impact on 
elapsed time as hints for the inner-relation tuples. 
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and stores the offsets of blocks containing matching inner-relation tuples in an array. Post- 

gres then discloses these offsets to TIP, 4000 in 20%-match case and 16000 in the 80%- 

case. In the second pass, Postgres rereads the outer relation but skips the index lookup and 

instead directly reads the inner-relation tuple whose address is stored in the array. Postgres 

does not give hints for the second read of the outer relation because TIP does not currently 

support hints for multiple streams of accesses with unknown interleaving. Postgres could 

observe how the inner-relation access are interleaved with the matching outer-relation 

tuples, but we did not go to the extra effort that this would have required. 

As a complication, Postgres maintains its own internal cache of 100 blocks. This cache 

significantly speeds index lookups because the index is organized as a B-tree and there is 

high locality for accesses to the nodes near the root of the tree. Even though the hinted, 

inner-relation accesses have very poor locality, a few of them hit in this cache and the 

hinted access never occurs. To confirm to the TIP system that Postgres is consuming the 

data it hints and is not a rogue application, Postgres issues a TIPIO_CANCEL hint for these 

blocks. 

3.4.4 Davidson 

The Multi-Configuration Hartree-Fock (MCHF) is a suite of computational-physics 

programs which were obtained from Vanderbilt University where they are used for 

atomic-physics calculations. The Davidson algorithm [Stathopoulos94] is an element of 

the suite that computes, by successive refinement, the extreme eigenvalue-eigenvector 

pairs of a large, sparse, real, symmetric matrix stored on disk. In the benchmark, the size 

of this matrix is 2089 8-KByte blocks or 16.3 MBytes. In practice, the matrix may be 

many times this size. 

The Davidson algorithm iteratively improves its estimate of the extreme eigenpairs by 

computing the extreme eigenpairs of a much smaller, derived matrix. Each iteration com- 

putes a new derived matrix by a matrix-vector multiplication involving the large, on-disk 

matrix. Thus, the algorithm repeatedly accesses the same large file sequentially. The algo- 

rithm terminates when the errors of its eigenpair estimates are within some threshold. In 

our benchmark, this requires 60 iterations through the matrix. 
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Annotating this code with in-line hints was straightforward8. One hint placed above 

the loop hints the first whole-file, sequential read of the matrix. A second hint within the 

loop discloses, at the start of each iteration, the read anticipated in the next iteration. The 

first sixty of Davidson's hints are accurate. When the algorithm terminates, one, uncon- 

sumed hint is left outstanding. 

3.4.5 XDataSlice 

XDataSlice (XDS) is a data visualization package developed by the National Center 

for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Cham- 

paign [NCSA89]. Among other features, XDS lets scientists select and view a false-color 

representation of an arbitrary planar slice through their 3-dimensional scientific dataset. 

The datasets may originate from a broad range of applications such as airflow simulations, 

pollution modeling, or magnetic resonance imaging, and tend to be very large. In our 

benchmark, XDS retrieves 25 random slices from a dataset of 5123 32-bit floating-point 

numbers which is a total of 512 MBytes in size. 

It is often assumed that because disks are so slow, good performance is only possible 

when data resides in main memory. Thus, many applications, including XDS, read the 

entire dataset into memory before beginning computation. Because memory is still expen- 

sive, the amount available often constrains scientists who would like to work with higher 

resolution and therefore larger datasets. Informed prefetching invalidates the slow-disk 

assumption and makes out-of-core computing practical, even for interactive applications. 

To demonstrate this, I first added an out-of-core capability to XDS. I next added disclos- 

ing hints for TIP to exploit. 

The selection of XDS as an example application for informed prefetching was fortu- 

itous because XDS has an internally layered structure. In adding hints to XDS, I show how 

to use layered disclosure to pass optimization information through layers of software with- 

out violating the integrity of module interfaces. 

I describe first the structure of XDS and then go on to describe how I added dynamic 

data loading and then disclosing hints to it. 

' Thanks to Daniel Stodolsky who annotated Davidson with hints. 
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3.4.5.1 XDataSlice organization 

XDS reads data from files stored in a self-describing format called the Hierarchical 

Data Format (HDF). NCSA has developed a library of routines to simplify access to HDF 

files and to enforce the HDF standard format. XDS binds this HDF library between itself 

and the file system. The HDF library is itself composed of two layers: low-level storage 

management in the H layer and scientific dataset object management in the DFSD layer. 

A single HDF file may contain many data objects such as raster images, raw scientific 

data, or the format specifier for numerical data. But, to the low-level H layer of the HDF 

library, all are just arrays of bytes with a name. The high-level DFSD layer of the library 

refers to these elemental data objects by name and may request the H layer to deliver logi- 

cal byte ranges from within individual objects. It is up to the H layer to allocate file space 

and keep track of the location and size of the various data objects. 

The DFSD layer groups a number of elemental data objects together to form a scien- 

tific data set. These objects include one holding the raw scientific data and others holding 

dataset metadata such as the dimensions of the data, the data type, and units and labels for 

the axes. Applications built on top of the DFSD layer refer to the scientific data set as if it 

were one complex data object with many typed data fields. 

The original XDataSlice code, operating above the HDF library, uses the DFSD inter- 

face first to determine dataset size so it can allocate adequate memory, and then to read the 

entire dataset into memory. To render a slice of the dataset, XDS loops through all the pix- 

els in the slice mapping each to a data element stored in memory. False color is applied 

based on a data element's value and the resulting bitmap is displayed in an X window. 

I extended this basic package to load data dynamically from large datasets. Standard 

3-D HDF data objects are written to disk in row-major order. Several full rows of data 

from even a large dataset fit in each 8-KByte file block. Consequently, when rendering a 

slice, all file blocks containing rows that intersect the slice must be read from disk. This 

has the disadvantage of requiring that the entire data object be read from disk to render a 

slice that cuts across all rows. To make loading arbitrary slices efficient, and in keeping 

with state-of-the-art tiling techniques [Wolfe96], I reorganized the object into submatrices 

as shown in Figure 3.5 and extended the DFSD layer to export a blocked view of the sci- 

entific data object. I then modified XDS to first determine which blocks are needed and 
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Figure 3.5. Blocked dataset storage layout. To facilitate the retrieval of arbitrary slices of data, the dataset 
is partitioned into submatrices each stored in its own file system block. The shaded cube above shows one 
such block and its share of a slice through the dataset. The blocks themselves are stored in row-major order, 
Z-axis first. Thus, sequential disk access favors slices in the Y-Z plane. To compensate, the blocks are 
asymmetrical, so that rendering slices in the X-Y plane requires fewer total blocks. 

then load only these blocks into memory before rendering the requested slice in the usual 

way. All of these changes add useful functionality and are independent of TIP. 

3.4.5.2 Extending HDF to disclose hints to TIP 
For this new version of XDataSlice to take advantage of TIP, it must disclose its 

expected accesses. Because the primary benefit of TIP is exposing I/O concurrency, the 

source of hints should be at a level aware of a large volume of work before it is actually 

requested. There are a number of possibilities, but a simple and natural choice is to issue 

hints within the DFSD layer of the library because XDS hands this layer a complete list of 

the needed blocks. This list is an excellent hint for TIP. 

Unfortunately, the DFSD layer cannot directly pass the list of blocks on to TIP. Even 

after the DFSD layer translates block coordinates into logical offsets within the scientific 

data object, it does not know the offsets within the enclosing file. It relies on the lower H 

layer for addressing and accessing files. The DFSD layer could "peek beneath the covers" 

of the H layer to compute the offsets itself, but this would violate the design's modularity 

and could break when the H layer is independently modified at some later time. 

A much better solution is to incorporate a path for the disclosure of optimization infor- 

mation into the interface to the H layer of the library. I have done this by adding an 

Hhint () routine to the library. It accepts hints from higher layers of the library in the lan- 

guage used by the rest of H layer: offsets and lengths within data objects. Hhint maps data 
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object offsets to file offsets and issues a TIPIO_SEG hint. Such disclosure is consistent 

with the module interfaces already in place; the DFSD layer issues hints about data objects 

and the Hhint routine translates these data-object hints into file-access hints which it dis- 

closes directly to TIP. The modularity of the HDF library is not a barrier to hints that dis- 

close. 

The Hhint routine provides the DFSD layer with a modular mechanism for issuing 

hints, but the DFSD layer still needs to find a way to call Hhint to issue hints. We accom- 

plish this through loop splitting. 

The DFSD layer receives a list of the coordinates of the submatrices required by the 

XDataSlice application to render a slice. The original, unhinting code loops over these 

coordinates translating each to an offset within the data object and then calling Hseek fol- 

lowed by Hread to retrieve the needed block. Inserting an Hhint call within this loop 

would not provide much advance warning. An alternative is to duplicate the loop and 

translate the coordinates and issue hints. The unchanged, original loop would re-translate 

the coordinates and perform the seek and read. To save the cost of re-translating the coor- 

dinates, I take advantage of the fact that the translated coordinates are passed in an array to 

Hhint. I use this same array to store the translated coordinates from the first loop and iter- 

ate over these in a second loop. Thus, the original loop is split to deliver hints efficiently. 

3.4.6 Sphinx 

Sphinx [Lee90] is a high-quality, speaker-independent, continuous-voice, speech-rec- 

ognition system developed at Carnegie Mellon. In the benchmark, Sphinx recognizes an 

18-second recording commonly used in Sphinx regression testing. 

Sphinx represents acoustics with Hidden Markov Models and uses a Viterbi beam 

search to prune unpromising word combinations from these models. To achieve higher 

accuracy, Sphinx uses a language model to effect a second level of pruning. The language 

model is a table of the conditional probability of word-pairs and word-triples. At the end 

of each 10 msec acoustical frame, the second-level pruner is presented with the words 

likely to have ended in that frame. For each of these potential words, the probability of it 

being recognized is conditioned by the probability of it occurring in a triple with the two 

most recently recognized words, or occurring in a pair with the most recently recognized 
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Figure 3.6. Sphinx: blocks hinted in each hint. This graph shows the distribution of the number of blocks 
hinted by each of Sphinx's 873 hints. The first approximately 120 hints are for initialization and disclose a 
maximum of 2477 blocks. The rest disclose dynamic loads of language model data as needed during the 
course of recognizing the speech segment. The average hint during the recognition phase is for about 15 
blocks, although many are for a lot more than that. 

word when there is no entry in the language model for the current triple. To further 

improve accuracy, Sphinx makes three similar passes through the search data structure, 

each time restricting the language model based on the results of the previous pass. 

Sphinx, like XDS, was originally an in-core only system. Because it was commonly 

used with a dictionary containing 60,000 words, the language model was several hundred 

megabytes in size. With the addition of its internal caches and search data structures, vir- 

tual-memory paging occurs even on a machine with 512-MBytes of memory. Sphinx was 

modified to fetch the language model's word-pairs and word-triples from disk as needed9. 

This enables Sphinx to run on a 128-MByte test machine 90% as fast as on a 512-MByte 

machine. 

Sphinx was also modified to disclose the word-pairs and word-triples that will be 

needed to evaluate each of the potential words offered at the end of each frame. Figure 3.6 

shows the distribution of the number of blocks hinted by each of Sphinx's 873 hints. The 

hints for the initialization-phase reads disclose a high degree of concurrency. Hints during 

the recognition phase are highly variable. Because the language model is sparsely popu- 

lated, at the end of each frame there are about 100 byte ranges that must be consulted, of 

which all but a few are in Sphinx's internal cache. However, there is a high variance on 

with hints. 
Thanks to Daniel Stodolsky who modified Sphinx to operate out-of-core and then annotated it 
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the number of pairs and triples consulted and fetched, so, although the hints provide little 

advance warning, they often expose I/O concurrency. 

3.5 Conclusion 

The first hurdle in making the case that application hints about future file reads can 

compensate for the growing disparity between processor and disk performance is demon- 

strating that important applications can in fact give hints. Without this, there is no need to 

pursue this line of research any further. 

In this chapter, I first argued for hints that disclose future accesses in preference to 

hints that give advice about filesytem behavior. The distinguishing feature of disclosure 

hints is that they are expressed using the same terms of file, byte offset, and byte length as 

the existing file-system interface. I presented a prototype interface for delivering disclo- 

sure hints. 

I then described three techniques for annotating applications to give disclosure hints: 

in-line hinting, loop duplication, and loop splitting. In six application case studies, I 

described how to use the three techniques to annotate important, I/O-intensive applica- 

tions to give hints. In one, XDataSlice, I showed how disclosure hints may be translated 

by intermediate software layers to preserve modularity. 

How successful were the annotations at disclosing these application's read accesses? 

Table 3.2 reports the I/O workloads of the benchmarks and the percentage of the read traf- 

fic disclosed in advance by hints. For four of the applications, hints disclose more than 

99% of the bytes read. Hints disclose 90% of the bytes read by a fifth application, Sphinx. 

Although hints disclose Postgres' random, data-dependent inner-relation accesses, no 

annotations disclose the large number of index accesses. However, as will be seen in 

Chapter 6 which describes the performance of the benchmarks, these index accesses cache 

well even without hints, and so, although incomplete, the hints yield huge performance 

wins for the application. 

Hints may disclose every access, but if they don't also expose concurrency, then they 

don't add the parallelism to the read workload needed to relieve the I/O bottleneck. Fortu- 

nately, even though the applications are drawn from a broad range of fields, they all tend 

to give hints in bursts. Here, I define a burst as a sequence of hints given between hinted 
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benchmark read 
calls 

read 
blocks read bytes write 

calls 
write 

blocks 
write 
bytes 

Agrep 

total 4277 2928 18,091,527 0 0 0 

% hinted 68% > 99% > 99% 

inaccurate 0 0 0 

Gnuld 

total 13,037 20,091 60,158,290 2343 3418 8,824,188 

% hinted 78% 86% > 99% 

inaccurate 0 0 0 

Postgres 
(20%) 

total 8678 8676 70,657,265 156 156 1,279,590 

% hinted 51% 51% 51% 

inaccurate 70 70 576716 

Postgres 
(80%) 

total 31,245 31,243 255,526,130 539 539 4,417,126 

% hinted 51% 51% 52% 

inaccurate 242 242 1,982,464 

Davidson 

total 19,000 144,425 1,027,634,130 1474 1487 110,860 

% hinted 99% > 99% > 99% 

inaccurate 2089 17,113,088 

XDataSlice 

total 46,356 46,352 370,663,914 2 2 4081 

% hinted 98% 98% > 99% 

inaccurate 0 0 0 

Sphinx 

total 65,282 77,714 193,350,787 18 20 18,030 

% hinted 96% 96% 90% 

inaccurate 0 ° 0 

Table 3.2. Summary of benchmark workloads and hints. This table shows the number of read and write 
calls issued by each of the benchmarks as well as the number of blocks and bytes accessed by these calls. If 
one read requests the first half of a block and the next the rest of the block, it is counted as two one-block 
reads for a total of two blocks. For the reads, it also shows the percentage of the calls, blocks, and bytes that 
had been hinted in advance. Three of the benchmarks issue some inaccurate hints as described in the text 
which are recorded here. There is no number for the inaccurate Davidson read calls because the hinted 
blocks are simply abandoned at the end of the run; there is no hint cancellation call. In no case are the 
inaccurate hints a sizable portion of the total. 

reads. In most cases, the applications perform all the reads hinted by a burst before issuing 

another burst of hints.10 Burst size is important because it is a rough measure of the con- 

currency exposed by the hints. Table 3.3 reports details about the hints given by each 

application including burst sizes. As the table shows, five out of six of the applications 

have average burst sizes in the thousands, and even minimum burst sizes in the hun- 
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benchmark 
hint 
calls 

total 
segments 

total 
blocks 

bursts of hints 

number min. size max. size avg. size 

Agrep 1349 1349 2922 1 2922 2922 2922 

Gnuld 8322 8322 15,371 4 562 7402 3843 

Postgres (20%) 2 4047 4455 2 409 4046 2228 

Postgres (80%) 2 15,917 16,325 2 409 15,916 8163 

Davidson 61 61 127,429 59 4178 6267 4213 

XDataSlice 25 45,241 45,241 25 46 3448 1810 

Sphinx 873 62,586 74,871 873 1 2477 86 

Table 3.3. Hints issued by the benchmarks. This table characterizes each benchmark's hints. On the left, it 
shows the number of hint calls and how many sequential segments of how many blocks these calls disclosed. 
With only one exception, the applications give hints in large bursts where a burst is defined as a sequence of 
disclosures unbroken by a read of a hinted block. Thus, bursts are peaks in the number of outstanding hints 
through time. The table presents burst information on the right. The benchmarks cover a broad range of hint 
characteristics. Davidson issues one hint for 2089 block matrix each iteration and has two outstanding at a 
time. Postgres gives two hints in two bursts, one for the sequential read of the 409 block outer relation, and 
one with thousands of segments of one block each for the thousands of inner relation blocks read. Gnuld and 
Agrep issue large numbers of hints, but for very few blocks each and in only a small number of bursts. The 
typically huge average burst sizes and even minimum bursts sizes show that these application's hints expose 
large amounts of I/O concurrency. 

dreds . This is a huge amount of potential concurrency; it will be quite some time before 

the bandwidths of thousands of disks are needed to balance just one processor. The only 

exception is Sphinx, but, even there, most hints expose substantial concurrency. 

The key point, as will be explored in depth in the next chapter, is that the concurrency 

exposed by these hints is orders of magnitude more than is needed today to balance disk 

and processor performance. Thus, these hints provide substantial potential for greater con- 

currency in the future. Further, in virtually every case the burst sizes are determined by 

dataset size. As dataset sizes grow over time, these applications will be able to give even 

larger bursts of hints and expose more concurrency. 

Overall, experience with these applications strongly suggests that, in general, it is pos- 

sible to annotate I/O-intensive applications with large numbers of useful disclosure hints. 

There are only two occasions when applications did not consume all outstanding hints before 
issuing more. Gnuld's second 'burst' is built up gradually while it consumes its first burst and therefore is 
not technically a burst as defined above. But, the gradual disclosure actually improves the value of the hints 
because they are all given over 500 accesses in advance in addition to exposing concurrency. Davidson 
always has a hint for the next iteration outstanding, so for most of its computation, it has hints for between 
2089 and 4178 blocks outstanding at any time. 

XDataSlice has one slice that just nicks the corner of the dataset and results in a burst of just 46 
blocks. But, these blocks represent all of the reads required to service the mouse click in this interactive 
application. 
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On the strength of this conclusion, in the following chapters I will explore how a system 

can take advantage of these disclosure hints to relieve the I/O bottleneck. 
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Chapter 4 

Cost-Benefit Analysis for Informed 
Resource Management 

In Chapter 3,1 demonstrated that a broad collection of important, I/O-intensive appli- 

cations can give hints that disclose most of their file reads in advance. The next step is for 

the file system to take advantage of these hints to improve I/O performance. Specifically, 

the file system could use the hints for 

1. aggressive prefetching that adds latency-masking asynchrony and throughput-pro- 

viding parallelism to the read workload, 

2. caching blocks for reuse to avoid disk accesses, 

3. clustering multiple accesses into fewer larger accesses that increases sequentiality 

and reduces CPU overheads, and 

4. disk scheduling that reduces seek distances and thus increases sequentiality. 

If the system had an infinite supply of cache buffers it would be relatively easy to accom- 

plish all of these goals. As soon as hints arrived, blocks that were already cached could be 

locked down so they wouldn't be ejected, and buffers could be allocated to initiate 

prefetches for all missing blocks. The system could sort this large collection of prefetches 

to minimize seeks and cluster contiguous prefetches to create maximally-sized disk 

accesses. 
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Unfortunately, cache buffers are a limited resource. Given the large numbers of hints 

that the benchmark applications issue, only the largest machines could allocate buffers for 

all hinted blocks. These same applications, when processing larger datasets, could issue 

enough hints to exhaust any machine's supply of buffers. Furthermore, cache buffers are 

not idle; unhinted accesses depend on them to cache data for improved performance. The 

system has to make hard choices about how to allocate its limited pool of cache buffers. 

Should it prefetch or should it cache? If there is a cache miss, which block should it eject 

to free a buffer? Should it be a hinted block or one for which there is no hint but which 

was recently accessed? It would not be too hard to derive some benefit from hints, but 

fully utilizing them requires a resource manager that balances the use of cache buffers for 

all of these competing demands. 

In this chapter, I develop a framework for resource management that continually 

applies cost-benefit analysis to find the right balance. I go on to show how to build a 

resource manager on top of this framework. In a nutshell, the idea is to estimate the cost or 

increase in I/O service time of ejecting a cached block to free a buffer and the benefit or 

decrease in I/O service time of using a buffer to initiate a prefetch, and reallocate a buffer 

from caching to prefetching when the benefit exceeds the cost. 

4.1 A framework for I/O management by cost-benefit analysis 

In general, cost-benefit analysis quantifies and compares the costs and benefits of pur- 

suing a course of action. If the benefits exceed the costs then it is advantageous to proceed, 

otherwise it isn't. If there are several candidate courses of action, then cost-benefit analy- 

sis can determine which would provide the greatest net benefit and therefore would be 

most advantageous to pursue. 

Cost-benefit analysis could be applied to the buffer allocation problem through a 

three-step process. First, compute the cost in increased elapsed time of ejecting each 

block. Second, compute the benefit in reduced elapsed time of allocating a buffer to each 

needed uncached block. Finally, pair the lowest-cost ejection with the greatest-benefit 

allocation to arrive at the replacement decision that leads to the greatest net reduction in 

elapsed time. Effectively, this approach would perform gradient descent on elapsed time 

as a function of the buffer allocations to the alternative uses. 
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Before describing, in the next subsections, the three key components of my I/O man- 

agement framework based on this approach, I need to be a little more precise about the 

scope of the cache manager's control and the terms used in the framework. 

Although the goal of this work is to minimize application wall-clock elapsed time, the 

cache manager does not control system components such as the process scheduler and vir- 

tual memory manager and so it cannot control elapsed time. The manager's control is lim- 

ited to the manipulation of cache buffers and the initiation of disk accesses. Specifically, it 

can make replacement decisions which eject cached blocks to reallocate buffers to fetch 

uncached blocks. These decisions largely determine the time it takes to service an I/O 

request. Thus, a more precise statement of the problem facing the cache manager is to 

make the replacement decisions and initiate the disk accesses that minimize I/O service 

time. Thus, in the resource management framework, costs and benefits are changes in I/O 

service time, not changes in application elapsed time. 

4.1.1 Independent estimates 

Prefetching, clustering prefetches, and servicing demand accesses are alternative strat- 

egies for reducing I/O service time that require free buffers. And, the LRU queue and the 

caching hinted blocks are alternative strategies for determining which blocks to hold onto 

to reduce I/O service time. The first component of my framework for cost-benefit I/O 

management is independent estimates of the impact on I/O service time of applying each 

of these strategies. 

The estimates are based on a model of system performance which I will describe in 

Section 4.2. In later sections, I will show how to derive the estimates for all of the strate- 

gies mentioned above, but here I give a quick summary of some of them. The benefit of 

allocating a buffer for prefetching is that it may mask disk latency. There is an estimate of 

how much this latency masking will reduce I/O service time. On the other hand, the cost 

of ejecting a hinted block is that it will have to be prefetched back. There is an estimate for 

how much this will increase I/O service time. The cost of taking a buffer from the LRU 

queue is a reduction in the hit ratio for unhinted accesses. There is an estimate of how 

much this will increase the average I/O service time of these accesses. 
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These independent value estimates avoid the need to consider all possibilities all at 

once. Thus, compared to allocation strategies that consider full replacement schedules or 

even just pairings of ejections and reallocations, they reduce the complexity of the cost- 

benefit analysis. Further, they ease the integration of new optimization strategies into the 

framework. For example, integrating virtual memory management into the cost-benefit 

framework would only require a new estimate for the cost of ejecting a virtual memory 

page; it would not require modifying the other estimates. Lastly, this same independence 

and extensibility enable modular implementation of system built on this framework. 

4.1.2 A common currency for comparing estimates 

In the cost-benefit framework, the independently determined costs and benefits are 

compared to determine which replacement, if any, would lead to the greatest net reduction 

in I/O service time. For these comparisons to be meaningful, the value estimates must all 

be expressed in the same terms; there must be a common currency for costs and benefits. 

Unfortunately, the estimates as described above are not directly comparable. For example, 

the cost of ejecting a hinted block is the one-time increase in I/O service time that results 

from prefetching that one block back, whereas the cost of taking a block from the LRU 

queue is an average increase in I/O service time for unhinted accesses. How can an aver- 

age change be compared to a one-time increase? As, another example, the increase in I/O 

service time of prefetching back ejected blocks 1000 vs. 5000 accesses from now should 

be about the same. Does this mean there is no reason to eject one over the other? Clearly, 

I/O service time alone is an insufficient metric of comparison. 

The missing factor is buffer usage. In optimizing buffer allocation, the real issue is not 

the absolute reduction in service time, but the reduction achieved per unit of buffer usage. 

Ejecting the block to be reaccessed in 5000 accesses frees a buffer for nearly 5000 instead 

of only 1000 accesses. The increase in I/O service time for the two cases may be about the 

same, but one frees a buffer that can be used elsewhere to reduce service time for a lot 

longer than the other does. This freed buffer is a benefit that offsets the cost of ejecting the 

block and should be taken into account when comparing value estimates. A metric of 

change in service time per unit of buffer usage accomplishes this. 
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To arrive at a formal definition of the common currency, first define the unit of buffer 

usage, or bufferage, as the occupation of one buffer for one inter-access period and call it 

one buffer-access. Then, define the common currency for the expression of all value esti- 

mates as the magnitude of the change in I/O service time per buffer-access. With this com- 

mon currency, the buffer allocator can meaningfully compare the independent value 

estimates. 

Because this common currency relates resource usage to the system goal of reducing 

service time, it eases extension of the manager. Adding support for remote files to the 

manager would not require new analysis of the relative merits of caching for remote vs. 

local files to arrive at some calibration that would allow the manager to choose between 

ejecting a local vs. a remote block. Instead, all that would be required are cost and benefit 

estimates of the change in I/O service time per buffer-access. Value estimates expressed in 

the common currency are already calibrated. If prefetching from the remote file system 

would reduce service time more per buffer-access than prefetching locally would, then 

prefetching remotely would be the right course of action. 

4.1.3 An allocation algorithm 

The final component of the framework is an allocation algorithm that can accept the 

many cost and benefit estimates, compare them at a global level and, identify the replace- 

ment that would produce the greatest net reduction in I/O service time. The algorithm 

must resolve two issues. First is how to merge multiple estimates of the value of a single 

buffer. This can happen when, for example, a block is on the LRU queue and there is also 

a hint that it will be reused. Then, there are both LRU and hinted cache estimates of its 

value. The second issue is how to find efficiently the need for a buffer with the greatest 

benefit and the available buffer with lowest cost. Because there may be thousands of hints 

and buffers, an exhaustive search could add substantial overhead. Section 4.2.6 addresses 

the first of these issues and Section 4.3.5 addresses the second. 

4.1.4 Assembling the components 

These three components are assembled to form the resource manager shown in Figure 

4.1. Each potential buffer consumer and supplier has an estimator that independently com- 

putes the value of its use of a buffer. The buffer allocator continually compares these esti- 
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Figure 4.1. Informed cache manager schematic. Independent estimators express different strategies for 
reducing I/O service time. Demand misses need a buffer immediately to minimize the stall that has already 
started. Informed prefetching would like a buffer to initiate a read and avoid disk latency. To respond to these 
buffer requests, the buffer allocator compares their estimated benefit to the cost of freeing the globally least- 
valuable buffer. To identify this buffer, the allocator consults the two types of buffer suppliers. The LRU 
queue uses the traditional rule that the least recently used block is least valuable. In contrast, informed 
caching identifies the block whose next hinted access is furthest in the future as least valuable. The buffer 
allocator takes the least-valuable buffer to fulfill a buffer demand when the estimated benefit exceeds the 
estimated cost. 

mates and reallocates buffers from the supplier with lowest cost to the consumer with 

greatest benefit when doing so would reduce I/O service time. 

The primary buffer consumers are demand accesses that miss in the cache, and 

prefetches of hinted blocks. Additionally, once a buffer has been allocated for prefetching, 

clustered prefetches (not shown) may ask for additional buffers. The buffer suppliers are 

the traditional LRU cache, and the cache of hinted blocks. 

Estimators for each buffer consumer and supplier independently determine the impact 

on I/O service time they anticipate if they respectively gain or lose a cache buffer and 

express this impact in terms of the common currency to the buffer allocator. Consumers 

compute the benefit or reduction in I/O service time per buffer-access they anticipate if 

allocated a buffer. Suppliers compute the cost or increase in I/O service time per buffer- 

access they anticipate if asked to give up a buffer. 



COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 67 

From one perspective, this approach to resource management is like a market econ- 

omy. Bidding to acquire cache buffers are the buffer consumers. Holding out are the 

buffer suppliers. The buffer allocator makes the market and manages trades. In this market 

there is no inflation or price gouging because all transactions are conducted using the 

gold-standard common currency that relates actual resource usage to the overall system 

goal of reducing I/O service time. 

The market analogy does not go too far, though. Where markets tend to be chaotic and 

content to let any trade happen that is mutually beneficial, the buffer allocator in this cost- 

benefit approach maintains tight control to ensure that the consumer promising the great- 

est benefit gets the buffer that can be sacrificed at lowest cost. For this reason, the image 

of this algorithm performing gradient descent on the dynamically changing surface of I/O 

service time as function of the buffers allocated to the different uses is more revealing. 

4.2 Cost-benefit analysis for informed prefetching and caching 

The previous section motivated and gave an overview of cost-benefit I/O manage- 

ment, but it left out many details. In this section, I fill in those details from an ideal, theo- 

retical perspective. First, I present the system model from which the various cost and 

benefit estimates are derived. I then go on to present the derivations for each estimator. 

Finally, I show how to compare the estimates at a global level to find the globally least 

valuable buffer and the globally most beneficial consumer. In the next section, I describe 

the adjustments to this ideal needed for a practical implementation. 

4.2.1 System model & assumptions 

The I/O manager's goal is to deploy its limited resources to minimize I/O service time. 

At its disposal are disk arms and file cache buffers. But, because I am primarily concerned 

with the exploitation of storage parallelism, I assume an adequate supply of disk arms and 

focus on the allocation of cache buffers. In Chapter 7,1 will discuss the effect of limited 

array size on the value estimates developed here. 

For the purposes of the model, I make certain assumptions about the system. In partic- 

ular, I assume a modern operating system with a file buffer cache running on a uniproces- 

sor with sufficient memory to make available a substantial number of cache buffers. With 

respect to workload, consistent with my emphasis on read-intensive applications, I assume 
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Figure 4.2. Components of system execution. In our simplified system model, application elapsed time, T, 
has two components, computation and I/O. The computational component, Tapp, consists of user-level 
application execution plus time spent in kernel subsystems other than the file system. The I/O component, 
TJ/Q, consists of time spent in the file system, which includes time for reading blocks, allocating blocks for 
disk I/Os, servicing disk interrupts, and waiting for a physical disk I/O to complete. 

that all application I/O accesses request a single file block that can be read in a single disk 

access and that the requests are not too bursty. Further, I assume that system parameters 

such as disk access latency, Tdisk, are constants. Lastly, as mentioned above, I assume 

enough disk parallelism for there never to be any congestion (that is, there is no disk 

queueing). As we shall see, distressing as these assumptions may seem, the policies 

derived from this simple system model behave well in a real system, even one with a sin- 

gle congested disk. 

The elapsed time, T, for an application is given by 

T = NI/o(TaPP + TI/o)  • (4.1) 

where NI/0 is the number of I/O accesses, Tapp is the inter-access application CPU time,1 

and Tj/o is the time it takes to service an I/O access. Figure 4.2 diagrams the system 

model, and Table 4.1 gives the definitions for the model variables. 

In the model, the I/O service time, TI/0, includes some system CPU time. In particular, 

an access that hits in the cache experiences time Thit to read the block from the cache. In 

the case of a cache miss, the block needs to be fetched from disk before it may be deliv- 

ered to the application. In addition to the latency of the fetch, Tdish these requests suffer 

the computational overhead, Tdriver, of allocating a buffer, queuing the request at the 

1 Note that Tapp = TCPU in the terminology of the paper, "Informed Prefetching and Caching" 
[Patterson95]. 
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symbol meaning 

T total application elapsed time 

Nl/O total application I/O requests 

Tapp average application CPU time between I/O requests 

Ti/o average I/O service time including file system CPU overhead 

Thit time to service an I/O request that hits in the buffer cache 

'driver 
CPU time to allocate a cache buffer and perform a disk I/O including interrupt servicing 
(does not include disk latency) 

Tdisk latency of a disk access 

'miss time to service an I/O request that misses in the buffer cache = Thit+ Tdrjver+ Tdisk 

n number of buffers in the LRU queue 

H(n) hit ratio for the LRU queue as a function of queue size, n 

TLRU time to service an unhinted request through the LRU cache 

X prefetching depth, or number of accesses in advance that a prefetch is initiated 

Tstall time the CPU goes idle waiting for an I/O to complete 

Tpf(x) time to service a request for a prefetched block as a function of the prefetch depth, x 

P(Tapp) 
the prefetch horizon, or the minimum prefetching depth, as a function of Tgpp, that elimi- 
nates CPU stalls for I/O 

A7"e/ec/M 
change in service time that results from ejecting a hinted block as a function of the depth 
at which it is prefetched back, x 

y the number of accesses in advance that a hinted block is ejected 

rd< rh the rate of respectively demand and hinted accesses 

sh \s[ segment /of the LRU queue, and the number of buffers in the segment 

hi cache hits to buffers in LRU segment s. 

A number of unhinted accesses; the denominator when computing H(n) 

P fixed, system-wide, upper-bound prefetch horizon 

Table 4.1. Performance model symbol definitions. These symbols are listed in the order they are defined in 
the text and will be used throughout this chapter. 

drive, and servicing the interrupt when the disk operation completes. The total time to ser- 

vice an I/O access that misses in the cache, Tmiss, is the sum of these times: 

T        = T     + T + T miss hit       driver       disk (4.2) 
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In the terms of this model, deallocating an LRU cache buffer makes it more likely that 

an unhinted access misses in the cache and must pay a delay of Tmiss instead of Thit. Allo- 

cating a buffer for prefetching can mask some disk latency. Ejecting a hinted block from 

the cache means an extra disk read will be needed to prefetch it back later. Piggybacking a 

prefetch on another access can save CPU overhead and avoid disk latency. In the next sec- 

tions, I quantify these effects. But, first note that any delay in servicing a demand miss is 

added directly to the I/O service time of the request, so there can be no better use for a 

buffer than initiating a read to service the miss. Acknowledging this, the benefit of allocat- 

ing a buffer for a demand miss is taken to be infinite, and requests for buffers for demand 

accesses are not denied. 

4.2.2 The cost of shrinking the LRU cache 

Over time, the portion of demand accesses that hit in the cache is given by the cache- 

hit ratio, H(n), a function of the number of buffers in the cache, n. Given H(n), the average 

time to service a demand I/O request, denoted T^rfn), is 

TLRuW = H(n)TUt + (l -H(n))Tmiss . (4.3) 

Taking the least-recently-used buffer from a cache employing an LRU replacement policy 

results in an increase in the average I/O service time of 

ATLRuW = TLR[/(n -1) - TLRU{n) -c (4.4) 

= (H(n)-H(n-l))(Tmiss-Thit) = AH(n)(Tmiss~Thit) .    (4.5) 

Because H(n) varies as the I/O workload changes, the LRU cache estimator dynamically 

estimates H(n) and the value of this expression as explained in Section 4.3. 

Every access that the LRU cache is deprived of this buffer will, on average, suffer this 

additional I/O service time, so the bufferage freed for this increase in elapsed time is one 

buffer-access. Thus, in terms of the common currency, the cost of taking a buffer from the 

LRU queue is the magnitude of the change in I/O service time given by Equation 4.5, and 

|Ar LRU^\ 
C°«LRU= bufferag; = ^LRU(n) . (4.6) 
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4.2.3 The benefit of prefetching 

Prefetching a block can mask some of the latency of a disk read, Tdisk. Thus, in gen- 

eral, an application accessing such a prefetched block will stall for less than the full Tdisk. 

Suppose the system uses x buffers to prefetch x accesses into the future. Then, stall time is 

a function of x, Tstau(x). Substituting this reduced stall for the disk service time in Equa- 

tion (4.2), we find that the service time for a hinted read is also a function of x, 

Tpf(x) = Thit + Tdr.ver + Tstall(x). (4.7) 

Then, assuming that prefetches of blocks 1 to x-1 have already been initiated, the benefit 

of using an additional buffer to prefetch x instead of x-1 accesses in advance is the change 

in service time, 

ATpf(x) = Tpf(x) -Tpf(x-1) (4.8) 

= Tstallt-Tstadx~l)  • (4-9) 

A key observation is that the application's data consumption rate is finite. Even when 

all data are cached or when prefetching has completely masked disk access time, applica- 

tion computation, Tapp, and the system overheads of servicing cache hits, Thit, and per- 

forming disk accesses, Tdriver, limit the rate at which the application issues requests. Thus, 

prefetches do not need to be started infinitely far in advance to be sure that they will com- 

plete before the application requests the prefetched data. Typically, the application reads a 

block from the cache in time Thit, does some computation, Tapp, and pays an overhead, 

^driven f°r future accesses currently being prefetched. Thus, even if all intervening 

accesses hit in the cache, the soonest one might expect a block x accesses into the future to 

be requested is x(Tapp + Thit + Tdriver). Under the assumption of no disk congestion, a 

prefetch of this xth future block would complete in Tdisk time. Thus, the stall time when 

requesting this block is at most 

This formulation is slightly different from that presented in the paper, "Informed Prefetching and 
Caching" [Patterson95] in that it compares prefetching x vs. x-1 accesses in advance instead of x+l vs. x. 
This reformulation lets us ask: assuming blocks 1 ... JC-1 have been prefetched, what is the benefit of 
prefetching the next block x accesses in advance. The change results in (x-1) appearing in equations instead 
of (JC+1), but has no other material effect. 



72 CHAPTER 4 

stall 
time prefetch horizon = P(Tapp) 

disi<Y< Tdisl<!iTaPP
+Tdriver+Thih 

Figure 4.3. Worst case stall time and the prefetch horizon. Data consumption is limited by the time an 
application spends acquiring and consuming each block. This graph shows the worst case application stall 
time for a single prefetch x accesses in advance, assuming adequate I/O bandwidth, and therefore no disk 
queues. There is no benefit from prefetching further ahead than the prefetch horizon. 

Tstallt * Tdisk ~ X(TaPP + Thit 
+ Tdrivel   • (4-10) 

Figure 4.3 shows this worst case stall time as a function of x. 

This stall-time expression allows us to define the distance, in terms of future accesses, 

at which informed prefetching yields a zero stall time. I call this distance the prefetch 

horizon, P(Tapp), recognizing that it is a function of a specific application's inter-access 

CPU time. 

disk 
(   app> ~ Tf       ~Pf     +T , .      ^   " (4-11) v   app ^ "* hit        driver' 

When sufficient disk bandwidth is available, there is no benefit from prefetching more 

deeply than the prefetch horizon. Thus, it is easy to bound the impact of informed 

prefetching on effective cache size; prefetching a stream of hints will not lead informed 

prefetching to acquire more than P(Tapp) buffers. 

Equation (4.10) is an upper bound on the stall time experienced by the xth future 

access assuming that the intervening accesses are cache hits and do not stall. However, it 

overestimates stall time in practice. In steady state, multiple prefetches are in progress and 

a stall for one access masks latency for another so that, on average, only one in x accesses 

experiences the stall in Equation (4.10). Conceptually, a stall on the first block masks the 

stall for subsequent accesses which, by the assumption of no disk queues, are proceeding 

without delay on other disk drives. Figure 4.4 diagrams this effect. Thus, the average stall 

per access as a function of the prefetch depth, P(Tapp) > x > 0, is 

T        (r\ -  Tdisk~X("TaPP + Thit + Tdriver) 1 staiv<x> ;  • (4-12) 
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Figure 4.4. Average stall time when prefetching in parallel. This figure illustrates informed prefetching as 
a pipeline. In this example, three buffers are used to prefetch three blocks concurrently and Tapp is assumed 
fixed. At time T=0, the application gives hints for all its accesses and then requests the first block. Prefetches 
for the first three accesses are initiated immediately. The first access stalls until the prefetch completes at 
T=5, at which point the data is consumed and the prefetch of the fourth block begins. Accesses two and three 
proceed without stalls because the latency of prefetches for those accesses is overlapped with the latency of 
the first prefetch. But, the fourth access stalls for Tstau = Tdisk - 3(Tapp+Thit+Tdriver.). The next two accesses 
don't stall, but the seventh does. The application settles into a pattern of stalling every third access. In 
general, when x prefetches occur in parallel, a stall occurs once every x accesses. 

At x = 0, there is no prefetching, and Tstall(0) = Tdisk. Similarly, for x > P(Tapp), Tstall(x) = 

0. Figure 4.5 shows that this estimate, although based on a simple model, is a good predic- 

tor of the actual stall time experienced by a synthetic application running on a real system. 

We can now plug Equation (4.12) into Equation (4.9) and obtain an expression for the 

impact on I/O service time of acquiring one additional cache buffer to increase the 

prefetching depth, 

ATpf(x) 

x= 1 

x^P(Tnnn) 

<T K   app 

—T disk 

+ Thit + T driver* 

aPP'    JC(JC-I) 

(4.13) 

x > P(Tnn„)    0 v   app' 

The values are negative because the benefit of prefetching is a reduction in elapsed time. 

The benefit drops off roughly as the inverse square of the prefetching depth until the 

prefetch horizon is reached. Beyond that point, there is no benefit from deeper prefetching 

under the assumption of adequate disk bandwidth. 
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Figure 4.5. Predicted and measured per-access stall time. To verify the utility of Equation (4.12), I 
measured the stall time of a synthetic microbenchmark as a function of prefetch depth. The benchmark does 
2000 reads of random, unique 8 KByte blocks from a 320 MByte file striped over 10 disks. It has 1 
millisecond of computation between reads, so Tapp = 1 msec, and, for the system described in Chapter 6, 
Thit+Tdriver = 569 usec and Tdisk = 15 msec. Overall, Equation (4.12) has a maximum error of about 2 
milliseconds, making it is a good predictor of actual stall time. The equation underestimates stall time 
because the underlying model neglects disk contention and variation in Tdisk. Chapter 7 explores these issues 
in greater depth. 

Every access that this additional buffer is used for prefetching benefits from this 

reduction in the average I/O service time. Thus, Equation (4.13) is the change in I/O ser- 

vice time per buffer-access, and the benefit of allocating a buffer for prefetching in terms 

of the common currency is the magnitude of this change. Thus, 

Benefit , = 
\^Tpf{x)\   _ 

Pf'bufferage ~ rTPf{x)\ (4.14) 

4.2.4 The cost of ejecting a hinted block 

Although there is no benefit from prefetching beyond the prefetch horizon, caching 

any block for reuse can avoid the cost of prefetching it back later. Thus, ejecting a block 

increases the service time for the eventual access of that block from a cache hit, Thit, to the 

read of a prefetched block, Tpf. In determining the change in service time that results from 

ejecting a block, what matters, therefore, is not how far in the future the ejected block will 

be accessed, but the number of accesses in advance that it will be prefetched back. If the 
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block is prefetched back x accesses in advance, then the increase in I/O service time 

caused by the ejection and subsequent prefetch is the differences between a prefetch and a 

hit, 

*TejectW = TpfW-Thtt (4-15) 

= Tdriver+ Tstallt   • (4-16) 

Although the stall time, Tstall(x), is zero when x is greater than the prefetch horizon, Tdriver 

represents the constant CPU overhead of ejecting a block no matter how far into the future 

the block will be accessed. 

This increase in service time from ejecting a block, ATeject(x), does not affect every 

access; it is a one time cost borne by the next access to the ejected block. Thus, to express 

this cost in terms of the common currency, we must average this change in I/O service 

over the accesses that a buffer is freed. If the hint indicates the block will be read in y 

accesses, and the prefetch happens JC accesses in advance, then ejection frees one buffer 

for a total of y-x buffer-accesses. Conceptually, if the block is ejected and its buffer lent 

where it reduces average I/O service time, then it will have y-x accesses to accrue a total 

savings that exceeds the cost of ejecting the block. Thus, the cost of ejecting a hinted 

block y accesses before its use is 

ATeiect(x)      T driver + T stall^ Cost •    , = 2>££i  = _ariver stau  
eJect    bufferage y-x 

where Tstau(x) is given by Equation (4.12). As we shall see in Section 4.3.3, the imple- 

mentation simplifies this estimate further to eliminate the dependence on the variable x. 

4.2.5 The benefit of informed clustering 

Clustering multiple contiguous accesses into one large sequential access both elimi- 

nates the CPU overhead of performing multiple accesses and maximizes disk throughput 

for those accesses. Hints provide the opportunity to piggyback future accesses on current 

ones to take advantage of spacial locality even when the accesses are widely separated in 

time. What is the benefit of allocating a buffer to cluster a future prefetch with a current 

access? 
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Figure 4.6. Local value estimates. Shown above are the locally estimated magnitudes of the change in I/O 
service time per buffer-access for the buffer consumers and suppliers of Figure 4.1. Because demand misses 
must be satisfied immediately, they are treated as having infinite value. The remaining three formulas are the 
absolute values of Equations (4.5), (4.14), and (4.17), for the LRU cache, hinted cache, and prefetch 
estimates, respectively. 

If the decision to fetch or prefetch a block has already been made, then the cost, 

^driven °f performing a disk read will be incurred. Any blocks that could piggyback on 

this read avoid most of the disk related CPU costs. If there are hinted blocks that can clus- 

ter with the first block, and they are not prefetched now in such a cluster, their later 

prefetch will incur the full CPU overhead of performing a disk access and possibly the 

cost of any unmasked disk latency. These are exactly the costs considered when deciding 

whether to eject a hinted block. Furthermore, clustering allocates a buffer for the same 

number of accesses that ejecting the block would free one. Thus, the benefit of informed 

clustering a prefetch of a block y accesses before it is accessed is the same as the cost of 

ejecting the same hinted block, 

BeneflW =  Costeject = 
T driver + T stall^ 

y-x 
(4.18) 

4.2.6 Global buffer value and the min-max buffer 

Figure 4.6 summarizes the value estimates in Equations (4.5), (4.14), and (4.17) which 

the various estimators use to determine the local value of a buffer. Even though these esti- 

mates are expressed in terms of the common currency, they are not yet ready for compari- 



COST-BENEFIT ANALYSIS FOR INFORMED RESOURCE MANAGEMENT 77 

son at a global level because the unit of bufferage, a buffer-access, only has local 

meaning. For example, when considering ejecting a block y accesses before it is needed, 

accesses were counted within the single hint sequence, not at a global level. Fortunately, 

multiplying hint estimates by the rate of the hinted accesses, rh, and the LRU estimate by 

the rate of unhinted demand accesses, rd, normalizes the estimates to the same time basis 

and gives the estimates global meaning. Intuitively, if 95% of all accesses in the system 

are unhinted, the cost to overall performance of reducing the LRU cache hit ratio is much 

greater than it would be if only 5% of the accesses depended on the LRU cache. Thus, it 

makes sense to scale the estimates in proportion to their share of total system activity. 

The buffer allocator uses the normalized estimates to decide when to take a buffer 

from a supplier and use it to service a request for a buffer. For example, deallocating a 

buffer from the LRU cache and using it to prefetch a block would cause a net reduction in 

aggregate I/O service time if rh-Benefitpf > r^Cost^j/. For the greatest reduction, though, 

the globally least-valuable buffer should be allocated. Unfortunately, it is not obvious 

which is the least-valuable buffer. If there are multiple hints for the same block, which 

should be used to value that block's buffer? If a hint refers to a block that happens to be on 

the LRU list, which value estimate should be used? 

To answer these questions, start by considering a single hint sequence that refers to the 

same block twice. If the block is ejected, it will have to be fetched back for the first hint. 

Ejected or not, prefetched back in time or not, after the first hinted access the block will 

certainly be in the cache. The first access pays Tdriver and stalls and subsequent accesses 

find the block in the cache (unless the block is ejected again, which would be a separate 

decision). Thus, the increase in service time that would result from ejecting the block now 

is determined by the first access. Furthermore, ejecting one block only frees one buffer 

and it only frees it until the first access takes the buffer back. Therefore, the first hint alone 

determines the ejection cost for the block, and the ejection cost is not, for example, the 

sum of the cost estimates based on the two hints. Indeed, even if there are a hundred hints 

for the block, the cost of ejecting the block is determined by the cost of prefetching it back 

in for the first hint. Note that the first hint leads to the greatest of the cost estimates based 

on any of the hints. 
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This analysis extends directly to multiple hint sequences from multiple processes that 

refer to the same block. One of the processes will request the block first and the other pro- 

cesses will find the block in the cache. Again, ejecting a block only frees one buffer and 

only needs to be fetched back once. The cost of ejecting the block is determined by the 

next access to the block. Because, at a global level, cost estimates are scaled by the access 

rate to the hint sequence, the anticipated first access leads to the greatest normalized cost 

estimate. 

In general, ejecting a block frees only one buffer and incurs at most one fetch cost to 

bring back in. These observations apply no matter what estimators are used. Thus, costs 

aren't additive nor are the freed resources. The cost of ejecting a particular block is the 

maximum of the various independent normalized cost estimates determined by the differ- 

ent estimators. 

The globally least-valuable buffer is the one whose maximum valuation is minimal 

over all buffers. Hence, the replacement policy chooses this min-max buffer for ejection if 

the benefit exceeds the maximum estimated cost. Although this replacement policy seems 

to require every estimator to compute cost estimates for every buffer, in practice, as we 

shall see in Section 4.3.5, only a small number of cost estimates need to be computed to 

identify the min-max buffer and the overhead of this replacement policy is reasonable. 

4.2.7 An example: emulating MRU replacement 

As an aid to understanding how informed caching 'discovers' good caching policy, we 

show how it exhibits MRU (most-recently-used) behavior for a repeated access sequence. 

Figure 4.7 illustrates an example. 

At the start of the first iteration through a sequence that repeats every N accesses, the 

cache manager prefetches out to the prefetch horizon. After the first block is consumed, it 

becomes a candidate for replacement either for further prefetching or to service demand 

misses. However, if the hit-ratio function, H(n), indicates that the least-recently-used 

blocks in the LRU queue don't get many hits, then these blocks will be less valuable than 

the hinted block just consumed. Prefetching continues, replacing blocks from the LRU list 

and leaving the hinted blocks in the cache after consumption. 
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Figure 4.7. MRU behavior of the informed cache manager on repeated access sequences. The number 
of blocks allocated to caching for a repeated access pattern grows until the caching benefit is not sufficient to 
hold an additional buffer for the N accesses before it is reused. At that point, the least-valuable buffer is the 
one just consumed because its next access is furthest in the future. This buffer is recycled to prefetch the next 
block within the prefetch horizon. A wave of prefetching, consumption, and recycling moves through the 
accesses until it joins up with the blocks still cached from the last iteration through the data. 

As this process continues, more and more blocks are devoted to caching for the 

repeated sequence and the number of LRU buffers shrinks. For most common hit-ratio 

functions, the fewer the buffers in the LRU cache, the more valuable they are. Eventually, 

the cost of taking another LRU buffer exceeds the cost of ejecting the most-recently-con- 

sumed hinted block. At the next prefetch, this MRU block is ejected because, among the 

cached blocks with outstanding hints, its next use is furthest in the future. 

At this point, a wave of prefetching, consumption, and ejecting moves through the 

remaining blocks of the first iteration. Because the prefetch horizon limits prefetching, 

there are never more than the prefetch horizon, P(Tapp), buffers in this wave. There is no 

risk that the cache manager will cannibalize the cached blocks to prefetch further into the 

future. Thus, the MRU behavior of the cache manager is assured. The cache manager 

effectively balances the use of buffers for prefetching, caching hinted blocks, and LRU 

caching. 

The informed cache manager discovers MRU caching without being specifically 

coded to implement this policy. This behavior is a result of valuing hinted, cached blocks 

and ejecting the block whose next access is furthest in the future when a buffer is needed. 

These techniques will improve cache performance for arbitrary access sequences where 

blocks are reused with no particular pattern. All that is needed is a hint that discloses the 

access sequence. 
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4.3 Implementation of cost-benefit I/O management 

My implementation of informed prefetching and caching, which is called TIP, 

replaces the unified buffer cache (UBC) in version 3.2c of the Digital UNIX operating 

system. To service unhinted demand accesses, TIP creates an LRU estimator to manage 

the LRU queue and estimate the value of its buffers. In addition, TIP creates an estimator 

for every process that issues hints to manage its hint sequence and associated blocks. 

In the following sections, I describe how these implemented estimators arrive at their 

cost estimates and explain how they differ from the ideal estimates described in the previ- 

ous section. I conclude with the description of an algorithm with a reasonable overhead 

that implements the min-max valuation of buffers. Chapter 5 describes the implementation 

in more detail. 

4.3.1 The LRU estimator 

LRU block replacement is a stack algorithm [Mattson70], which means that the order- 

ing of blocks in the LRU queue is independent of the length of the queue. Consequently, 

cache hits occur at the same depth in the queue for all cache sizes. By observing where 

cache hits occur in a queue of N buffers, it is possible to make a history-based estimate of 

H(n), the cache-hit ratio as a function of the number of buffers, n, in the cache for any 

cache size less than N,0<n<N. Specifically, H(n) is estimated by the sum of the number 

of hits with stack depths less then or equal to n divided by the total number of unhinted 

accesses, A. 

In TIP, the number of buffers in the LRU queue varies dynamically. When the queue 

is short, TIP needs to know whether a larger queue would have achieved a higher hit ratio 

so that it can determine whether it would be beneficial to grow the LRU queue. To deter- 

mine H(n) for caches larger than the current size, TIP uses ghost buffers. Ghost buffers are 

dataless buffer headers which serve as placeholders to record when an access would have 

been a hit had there been more buffers in the cache. My use of ghost buffers was inspired 

by work by Maria Ebling on caching in a distributed file system [Ebling94]. The length of 

the LRU queue, including ghosts, is limited to the total number of buffers in the cache. 

Unfortunately, efficiently determining where in an LRU queue hits occur is not easy. 

After every cache miss, the buffer is released to the tail of the queue. If all accesses 
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Figure 4.8. Piecewise estimation of H(n). The LRU list is broken into segments, s2, s2, s3,... Each buffer is 
tagged to indicate which segment it is in. The removal of the buffer on a cache hit lowers the buffer count for 
its segment below the target count. When a buffer is released to the tail of the LRU queue, the other buffers 
overflow from one segment to the next until an under-full segment stops the cascade. The tag on a buffer is 
updated when the buffer overflows from one segment to the next. When there is a cache hit in segment i, the 
segment hit count, ht, is incremented. That segment's contribution to the hit ratio is then h/A, where A is the 
total number of unhinted accesses. See Section 5.2.6 for more detail. 

missed, the position of a buffer in the queue would be equal to the number of accesses 

since the buffer was last referenced because every access would release a new buffer to 

the tail of the queue. However, when a hit occurs, the accessed buffer is promoted to the 

tail of the queue. The position of a buffer in the queue depends on how many cache hits 

there have been between the buffer in question and the tail of the queue. For example, con- 

sider a buffer that is second from the tail of the queue. After 100 accesses to the first 

buffer, the buffer is still second from the tail. On the other hand, 100 accesses to the 200th 

position move the second buffer to position 102. Depending on the particular sequence of 

hits and misses, the buffer could be anywhere in between. 

The most obvious technique for determining the queue position of a cache hit is to run 

down the queue and count the buffers from the tail to the hit buffer. This could mean tra- 

versing a linked list of hundreds or thousands of buffers on every cache hit. Utilizing this 

approach would add substantial CPU overhead to the system. 

To reduce overhead, hit counts are recorded not by individual queue depths, but by 

disjoint intervals of queue depths, called segments. Shown in Figure 4.8, this allows a 

piecewise estimation of H(n). Such averaging of hits over a segment of the queue has the 

advantage of smoothing over little spikes and plateaus in the function H(n). 
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The cost of losing an LRU buffer given in Equation (4.5) requires an estimate of 

AH(n)=H(n)-H(n-l). Because the piecewise estimate of H(n) is linear within any segment, 

AH(n) is equal to the slope of H(n) within a segment and is the same for all buffers in the 

segment if we ignore the discontinuity at the boundary between segments. This slope is 

the increase in H(n) over the segment divided by the number of buffers in the segment. 

Thus, 

Aff(/i) *-f-j- = -J-j (4.19) 
H     A\si\ 

where n falls within segment st, ht is the number of hits in segment st, A is the total number 

of unhinted accesses, and ls,-l represents the number of buffers in segment st. In TIP, l^-l = 

100. 

In a running system, file deletions and other events may remove many buffers from 

some segments. The question arises: should buffers be shifted back from higher-numbered 

segments to fill the vacancies in the lower-numbered segments? The issue is which seg- 

ment should get credit if there is a subsequent hit on one of the shifted buffers. Concretely, 

suppose buffer b is in segment s3 when 20 blocks cached in segment s2 are deleted and b 

could be shifted back into s2. Should an access to b be scored a hit in s2 or s3l The key 

observation is that if there had not at one time been enough buffers in the LRU queue to 

fill segments s} and s2 and push b into segment s3, then the block in b would have been 

ejected, b recycled and the access to b would have been a miss instead of a hit. The LRU 

estimator asks the question: What would be my hit ratio if I had n buffers. Shifting b back 

to segment s2 and scoring the hit there would mislead the estimator into believing that it 

needed fewer buffers than it did to get a hit to b. Leaving b in segment s3, records the fact 

that enough buffers to push b into segment s3 were needed to get a hit to b. Thus, TIP does 

not shift buffers back. 

One consequence of not shifting buffers is that there is not always a direct correlation 

between the number of buffers currently in the LRU queue, n, and the segment number of 

the buffer at the head of the LRU queue. I just argued that, in fact, it is the segment num- 

ber of a buffer and not the number of buffers that is the key parameter when estimating the 
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cost of losing the buffer at the head of the LRU queue. Thus, properly speaking, cost of 

losing a buffer is a function of the segment number, i, and 

hi 
AH(s.) = -f, (4.20) 

N 
should replace AH(n) in the expression for the cost of losing an LRU buffer. 

A final complexity arises because, in general, H(n) may not be similar to the smoothly 

increasing function suggested by Figure 4.8. There is often a large jump in the hit ratio 

when the entire working set of an application fits into the buffer cache. The value of 

AH(Sj) would be high for the segment that captures the working set. A large LRU queue 

would successfully defend its buffers and continue caching the working set. However, if 

the LRU queue is initially not large enough to hold the working set as the number of hits 

mount and it becomes clear that there is a working set to cache, then a strictly local esti- 

mate of AH(st) would fail to see the benefit of growing the LRU cache. Consequently, the 

LRU queue could fail to grow and might remain at its small initial size no matter how long 

the working set continued to exist. The end result is that TIP's buffer allocations would 

depend on initial conditions. To avoid this undesirable dependence, TIP's LRU estimator 

uses a simple mechanism to avoid being stuck in a local minima that ignores the benefit of 

a much larger cache: AH(st) is modified to be max . > t{AH(s.)} in the LRU value esti- 

mate. That is, the value of the marginal hit ratio is rounded up to the value of any larger 

marginal hit ratio occurring deeper in the LRU stack. If the LRU cache is currently small, 

but a larger cache would achieve a much higher hit ratio, this mechanism encourages the 

cache to grow. 

Applying these modifications to Equation (4.6) yields the following expression for the 

cost of losing an LRU buffer when the head of the LRU list is in segment st: ' 

CosW- ATLRU(i) - max.>,{AH(sj)}(Tmiss- Thu) (4.21) 
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4.3.2 The prefetching estimator 

Equations (4.11) and (4.13) give precise expressions for, respectively, the prefetch 

horizon and for the benefit of prefetching. In practice, variations in model parameters can 

lead to either over- or underestimation of the actual stall. Specifically, variations in appli- 

cation execution time, Tapp, can speed or slow the rate of data requests. Also, runs of 

cached blocks larger than the prefetch horizon can suspend prefetching which ehminates 

the CPU overhead of prefetching, Tdriver, from the equations and reduces the interaccess 

period. On the other hand, blocks may need to be prefetched for other applications which 

may add additional Tdriver overhead to the interaccess period. To eliminate the overhead 

of measuring Tapp and increase tolerance to bursts of application requests and runs of 

cached blocks, TIP assumes Tapp = 0 and discounts the overhead of prefetching other 

blocks, Tdriven to arrive at a static, system-wide upper-bound on the prefetch horizon, 

P = T^ ■ (4-23) 
hit 

This is an upper-bound prefetch horizon for an application that does negligible computa- 

tion, has most of its data cached, but an infinitely large array at it disposal. It is reasonable 

for TIP to be generous when deciding how deep to prefetch because, as we will see, the 

system parameters of Tdisk and Thit for the TIP testbed lead to a modest value of P. On 

future systems with different values for these parameters, there may be more incentive to 

tighten these estimates. Section 7.2 explores this issue in more depth. 

Finally, the assumption of negligible application CPU time leads to a very small bene- 

fit of Thit for allocating the first buffer for prefetching, x=l in Equation (4.5). In contrast, 

the much larger benefit of adding a second buffer is TdislJ2. Recognizing that multiple 

buffers will be used for prefetching, I define a benefit for allocating the first buffer for 

prefetching that leads to a smooth benefit function. 

Together, these implementation considerations lead to this variant of Equation 4.6 
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Benefit^ = \ATpf(x)\ 

x - 1     T disk 

x<p       Tdisk      . (4.24) 
x(x- 1) 

x>P    0 

4.3.3 The hinted cache estimator 

Equation (4.17) in Section 4.2.4 expresses the cost of ejecting a hinted block in terms 

of y, the number of accesses till the hinted read, and x, how far in advance the block will 

be prefetched back and is repeated here for easy reference: 

c„st.,=iAyi=r**.r+r«.«w. 
eJeci       bufferage y-x 

The dependence on x poses two difficulties. First, it ties the estimate of the cost of 

ejecting a block to an estimate of when the block will be prefetched back. A precise deter- 

mination would require knowledge of other costs and benefits that the prefetch would be 

bidding against for a buffer. Even if this could be done, it would destroy the independence 

of the estimators. To maintain estimator independence and eliminate the possibly substan- 

tial overhead of determining x, I simplify the expression for the cost of ejecting a hinted 

block by assuming that the prefetch back will occur at the (upper-bound) prefetch horizon, 

P. The stall for such a prefetch is zero, so, for y > P, we have, 

T /-<    4. driver ,. __ 
CoSteject =  ——f   ■ <4-26> 

If the block is already within the prefetch horizon, y < P, I assume that the prefetch 

will occur at the next access, that is (y-1) accesses in advance. Then, to maintain consis- 

tency between this estimate of when the block will be prefetched back and the estimate of 

the stall that will result on the prefetch, I apply the assumptions of Section 4.3.2 used to 

compute P, and set Tapp = 0 and neglect Tdriver in the expression for the stall: 

T      — xT T rp,        ,   s.        disk hit disk    ^ ,. „„N 
TstallW~   =  — Thit  ■ (4-27) 

Thus, for 1 < y < P, we have, 
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ATeject(y)  =  Tdriver + ^f " ^ft   • (4.28) 

Unfortunately, using this equation could lead to prefetching a block back shortly after 

ejecting it. Even though the expression assumes that the prefetch back will occur on the 

next access, ejecting a block only to prefetch it back immediately would be wasteful. To 

avoid this thrashing, there should be hysteresis in the valuations; that is, we need 

\ATeject(y)| > \AT
Pf(y - l )| > or> substituting, (4.29) 

disk disk 
Tdriver + JZJ ~ Thit > {y _ 1){y _ 2)   • (4-30) 

Unfortunately, this inequality does not hold for all possible values of Tdriver, Tdisk, and 

Thit. To guarantee robustness for all values of these parameters greater than zero, I choose 

to add Thit to ATejec/y) for 1< y < P ? Assembling the pieces, we have, 

y driver + T disk 

T disk 
C0Steject 

l<y<P     T,.      + _am ,,,n J driver      v—1    ' (4-31) y-\ 
T 

y>p driver 

y-P 

4.3.4 Implementation of informed clustering 

In Section 4.2.5,1 argued that the benefit of informed clustering, where the prefetch of 

one block is piggybacked on the prefetch of another, is the same as the cost of ejecting the 

block if it were already cached. In keeping with this argument, TIP uses the same equa- 

tions to implement both the benefit of informed clustering and the cost of ejecting a hinted 

block, namely Equation (4.31). 

The informed clustering estimator is not like the others in that it is not constantly bid- 

ding for a buffer. It can only use a buffer when another prefetch is about to be sent to disk. 

•3 

It turns out that this inequality does hold within the prefetch horizon where it is applied. The Thit 

term could be included and hysteresis would be preserved. I do not expect this to have a measurable impact 
because, in practice, blocks within the prefetch horizon are valuable and are rarely, if ever, ejected. 
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Figure 4.9. Local value estimates in the implementation. Shown above are the local estimates of the value 
per buffer-access for the buffer consumers and suppliers of Figure 4.1. These estimates are easy-to-compute 
approximations of the exact estimates of Figure 4.6. 

At that time, a check for hints for contiguous blocks is made, and if any are found, and the 

benefit of the clustered prefetch exceeds the value of the globally least-valuable buffer, 

then the buffer is allocated and a cluster built. This special allocation path may cause clus- 

tering to be allocated a buffer before a regular, higher-benefit prefetch of some other block 

within the prefetch horizon. Strictly speaking, buffers should be allocated to prefetches 

and clusters in order of greatest benefit. But, doing so in this case while still supporting 

clustering could require initiating multiple different prefetches and then going back to 

build clusters around these multiple prefetches. It might even require intermingling these 

two activities. Certainly, a system could be built to support this, but it would add substan- 

tial complexity. Instead, I choose to rely on the fact that clustered prefetches never allo- 

cate more than 7 blocks at a time and so are unlikely to deplete the supply of buffers 

available for regular prefetching. 

Figure 4.9 summarizes the equations used to estimate buffer values in TIP. The benefit 

of informed clustering is not shown because it is not constantly bidding for buffers and 

because it is the same as for the hinted cache. 
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4.3.5 Identifying the min-max buffer 

Section 4.2.6 identified the min-max buffer as being the globally least valuable in the 

cache and therefore the buffer that should next be replaced when a new buffer is needed4. 

Unfortunately, as presented there, it appears that identifying the min-max buffer and 

therefore making a replacement decision requires all estimators to estimate the value of all 

cached blocks and then sorting these blocks by value. This would entail thousands of cal- 

culations for every block allocation which would add far too much overhead to be practi- 

cal. In this section, I show how only a small number of cost estimates need be computed to 

identify the min-max buffer. Indeed, when few data blocks are shared among processes, 

each replacement decision requires as few as one cost-estimate calculation. 

The first observation is that individual estimators can easily rank blocks by value with- 

out calculating actual value estimates. The LRU estimator ranks blocks on the LRU list in 

the order they appear on the list and blocks not on the list have zero value. A hint estima- 

tor ranks blocks in order of their next appearance in the hint sequence and blocks that 

don't appear in the sequence have zero value. Thus, an estimator with appropriate data 

structures can quickly identify blocks of no value to it as well as the block with the mini- 

mal positive value without making any cost calculations. 

If no estimator values a particular block, then the block has no global value, and it is a 

candidate for immediate replacement; it is the min-max buffer. If there are multiple such 

blocks, then the algorithm can choose randomly from among them. Such replacement 

decisions require no cost calculations. 

In the more interesting case, every block is valued by some estimator. Suppose, as a 

restricted case, every block is valued by exactly one estimator. Then, the max valuation 

across estimators for a particular block is the value assigned by the one estimator that val- 

ues it. Effectively, we can ignore the zero-value estimates of the other estimators. Among 

the blocks that an estimator values, one will have the minimal valuation for that estima- 

tor.5 Clearly, the block with the globally minimal of the max valuations (the min-max 

block) will be one of these blocks that is minimally valued by an estimator. Then, to find 

the min-max block, it is sufficient for each estimator to compute the value of its minimally 

Recall that the min-max buffer is the one whose maximal valuation by any estimator is minimal 
among all of the buffers. 
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valued block and then, at a global level, to determine which of these minimally valued 

blocks is least valuable. 

In the above case, it appears that each estimator needs to compute one value estimate 

(for its minimally valued block) per replacement decision. This is already a great improve- 

ment over computing value estimates for all blocks. In fact, it is not even necessary to 

make this many calculations. Value estimates only change when some state relevant to an 

estimator changes such as a block it values is ejected, a block it desires is prefetched, or an 

application consumes a hinted block. Therefore, the only estimator that needs to compute 

a new value estimate from one replacement decision to the next is the one whose mini- 

mally valued block was ejected. Thus, only one cost calculation is needed per replacement 

decision for this restricted case. 

In general, multiple estimators may value the same block. For example, there may be a 

hint for a block that also happens to be on the LRU queue. In this case, there is no guaran- 

tee that the min-max block will be minimally valued by some estimator; each estimator's 

minimally valued block may be highly valued by some other estimator and all estimators 

may value some block less than they value the min-max block. Thus, if we only consider 

for replacement blocks that are minimally valued, we may not even consider the min-max 

block for replacement. How, then, can we find the min-max block without computing the 

max valuation for all blocks? 

The solution is to assume that only one estimator values any block and then use lazy 

evaluation to catch violations to this assumption. Here's how this works. Each estimator 

computes the value of its minimally valued block and the globally least valuable of these 

is selected as the candidate for replacement. Thenceforth, the estimator whose block was 

selected acts as if the block had been ejected from the cache; it no longer considers the 

block when choosing its minimally valued block; the estimator ceases tracking the block6. 

Before the block is actually ejected, a check is made to see if any other estimator values 

In practice, an estimator may compute the same valuation for multiple blocks. For example, the 
LRU estimator computes the same value for all blocks within a queue segment. Nevertheless, it can pick one 
it thinks is least valuable: the one at the head the LRU list. In principle, it doesn't matter which of a set of 
equivalently valued blocks is replaced. For the allocation algorithm to work, all that is needed is some way, 
even random selection, to pick one block from the set of equivalently valued blocks. 

The notion of tracking is further clarified below. 
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start: 
/* all estimators have already computed the cost of their */ 
/* minimally valued tracked block and these costs have */ 
/* been normalized for global comparison */ 
estimator with lowest global cost { 

names its least valuable block; 
ceases tracking the named block; 
computes value of new least valuable block it is tracking; 
submits new value for normalization for global comparison; 

} 
/* check that no estimator values named block more highly */ 
foreach estimator { 

query to see if estimator values named block more highly; 
if yes { 

/* block is saved from replacement */ 
valuing estimator { 

begins tracking saved block; 
if saved block is now its least valuable { 

computes value of new least valuable block; 
submits new value for normalization for 

global comparison; 
} 

} 
goto start; 

} 
} 

Figure 4.10. Algorithm for identifying the min-max buffer. The algorithm optimistically assumes that the 
globally least-valuable buffer, the min-max buffer, is the one valued least by the estimator with lowest global 
cost. Before reallocating the buffer, the algorithm checks that, in fact, no other estimator values the block 
more highly. In most cases, this approach requires just one or a few cost calculations per allocation decision. 

the block more highly. If one does, the candidate block is saved from ejection, the valuing 

estimator begins tracking the block if it isn't already doing so, and the algorithm loops to 

pick a new candidate for replacement. If no other estimator values the block more highly, 

then this valuation is the maximal valuation for that block across all estimators. Further- 

more, because this maximal valuation is less than at least some valuation by some estima- 

tor for every other block in the cache, this candidate block is the globally least yaluable 

according to the min-max valuation of blocks and it should be ejected. Finally, note that 

because each iteration that picks a new candidate eliminates one block from consideration 

by one estimator, forward progress is guaranteed. Figure 4.10 presents pseudocode for the 

algorithm. 

Observe that it is the mechanism of tracking that prevents an estimator from repeat- 

edly picking the same block for replacement. When identifying its minimally valued 
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block, an estimator only chooses from among the blocks it is tracking. Effectively, each 

estimator only sees the subset of all cached blocks that it is tracking. Once an estimator 

picks a buffer for replacement, the buffer disappears from its view of the cache. Because 

the algorithm just described for identifying the min-max block uses lazy evaluation to 

check estimators before ejecting a block, the algorithm correctly identifies the min-max 

buffer no matter which estimator is initially tracking the buffer. However, it is important 

that some estimator be tracking every buffer. Because estimators only choose from among 

buffers they are tracking when nominating buffers for replacement, a buffer untracked by 

any estimator will never be picked for replacement and will stay in the cache forever. 

4.4 Conclusion 

Disclosure hints provide a great opportunity for optimizing I/O performance through 

informed prefetching, clustering, and caching. Unfortunately, these optimizations com- 

pete with each other as well as traditional LRU caching for cache buffers. How should 

buffers be allocated to take maximum advantage of hints while preserving buffers for the 

LRU queue? In this chapter, I present my solution to this problem. 

In approaching the problem, I wanted to find a reasoned solution and to avoid rule-of- 

thumb approaches that require fiddling with tunable parameters. The key insight was that 

because buffer managers most commonly reallocate blocks one-at-a-time, ejecting one 

block to load another, they present a splendid opportunity to apply cost-benefit analysis. If 

estimates for both the cost of ejecting a block and the benefit of giving the freed buffer to 

another block could be found, then it would be clear which block, if any, to eject and 

which block should replace it. 

My framework for resource management by cost-benefit analysis has three key com- 

ponents. First, a collection of independent estimators dynamically estimate either (1) the 

benefit (reduction in application I/O service time) of allocating a buffer for prefetching or 

a demand access, or (2) the cost (increase in I/O service time) of taking a buffer from the 

LRU queue or the cache of hinted blocks. Because the estimators are independent, they 

are relatively simple and the system is extensible because the addition of a new estimator 

does not require changes in the existing ones. 
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For these estimates to be comparable at a global level they must be expressed in terms 

of a common currency, the second component of the framework. This common currency 

relates usage of the cache buffer resource to the system goal of reducing I/O service time. 

Expressed in terms of this common currency, estimates indicate how much service time 

will change per unit of resource freed or consumed, or, colloquially, how much bang for 

the buck. 

The third and final component is an algorithm that finds the globally least valuable 

buffer and reallocates it for the greatest benefit when the estimated benefit exceeds the 

anticipated cost. The first issue is determining at a theoretical level that when multiple 

estimators value the same buffer, the buffer's global value is the maximum assigned by 

any estimator. Thus the globally least valuable buffer is the one whose maximal valuation 

is minimal across all buffers. Even with independent estimates of the cost or benefit of 

ejecting or gaining an individual buffer, this global valuation could require that value esti- 

mates be computed for all of the many hundreds or thousands of cache buffers. Fortu- 

nately, individual estimators can rank buffers without computing their value. I showed 

how to construct an algorithm that takes advantage of this fact, optimistically assumes that 

only one estimator values any buffer, and uses lazy evaluation to catch violations of this 

assumption. In the common case, this algorithm requires only one cost calculation by one 

estimator per buffer allocation event. 

With this framework, I developed an analytical performance model and used it to 

derive estimates in terms of the common currency for the benefit of prefetching and build- 

ing clusters of prefetches, and for the cost of ejecting a hinted block or shrinking the LRU 

cache. I then showed how to adapt the analytical estimates for use in an implementation. 

In particular, I showed how to dynamically estimate the hit ratio for LRU queue as a func- 

tion of queue size. 

This cost-benefit approach to resource management provides the reasoned solution I 

sought. Analytical performance models provide the basis for buffer allocation decisions. 

The cache manager dynamically applies the models to reallocate buffers to perform gradi- 

ent descent on I/O service time as a function of the allocation of buffers among the com- 

peting demands. 
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Chapter 5 

Implementation of Informed Prefetching 
and Caching 

Application disclosures of future file reads provide opportunities for: aggressive paral- 

lel prefetching; clustering of multiple prefetches into fewer, larger accesses; disk schedul- 

ing of multiple prefetches; and caching data for reuse. Chapter 4 provided the theoretical 

and practical framework for a system that applies run-time cost-benefit analysis to exploit 

all of these opportunities while preserving buffers in the LRU queue for unhinted 

accesses. In this chapter, I show what is needed to implement a working system around 

this framework and I describe how my implementation, called TIP, meets these needs. I 

will also share some of the particular problems faced in implementing TIP inside the Dig- 

ital UNIX operating system. I start with a brief overview of how TIP fits in the rest of the 

kernel and the functionality it must provide before going on to consider how it provides 

that functionality. 

5.1 Overview 

TIP replaces the Unified Buffer Cache (UBC) in version 3.2c of the Digital UNIX 

(DU) kernel as shown in Figure 5.1. TIP provides conventional file caching service for the 

several file systems that DU supports including UFS, a variant of the Fast File System 

(FFS) [McKusick84] and the Network File System (NFS) [Sandberg85]. Application file 

requests first pass through the Virtual File System (VFS) [Sandberg85, Kleiman86] which 

forwards them to the target file system (UFS, NFS, or some other). The target asks the 
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Figure 5.1. The TIP informed cache manager in the Digital UNIX operating system. When applications 
don't hint, TIP provides conventional caching service for the various file systems, including the UNIX File 
System (UFS) and the Network File System (NFS). Application requests for data first go through the Virtual 
File System (VFS) layer which forwards them to the appropriate file system which checks TIP to see if the 
requested data is cached. If not, a buffer is allocated for the missing block and the file system initiates an I/O 
to load the block into the buffer. Application hints for open files are delivered via VFS in ioctls on the file 
descriptor. Hints for unopened files are delivered in ioctls to the TIP pseudo-device (/dev/tip). See text for 
further details. 

cache if it has the referenced block. If not, the cache allocates a new buffer which the file 

system fills with the requested block. 

The cache is organized by vnode (the structure in VFS which describes a file) and log- 

ical offset within the file. Thus, when checking the cache for a block, file systems specify 

the vnode and offset of the block in question. To find blocks quickly, both TIP and the 

original UBC use a conventional hash table much like the one in the BSD 4.3 file system 

[Leffler89]. But, the cache in that system was organized by disk block, not logical file 

block. This logical-block organization has certain implications for access clustering which 

will be discussed in Section 5.2.2. 
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hint target description 

TIPICLSEG /dev/tip batch of <offset, length> seg- 
ments for a named file 

TIPIO_FD_SEG open file descriptor 
batch of <offset, length> seg- 
ments for an open file 

TIPIO_MFD_SEG /dev/tip 
batch of <fd, offset, length> seg- 
ments for multiple open files 

TIPICLCANCEL 
/dev/tip or 
open file descriptor 

cancels segment at head of hint 
list; used when a hint turns out to 
be erroneous 

Table 5.1. Ioctl calls in the disclosure hint interface. Disclosure hints describe future requests in the same 
terms as the existing file interface. Thus, they must specify the file, the starting offset of the access, and the 
length of the sequential access before a seek to a new offset. This information is relayed to the file system via 
ioctl system calls using one of the hints specified in this table. Hints specifying a file by name are given in 
ioctl calls to the /dev/tip pseudo-device, whereas ioctls giving hints about open files can target those files 
directly. 

To conventional caching functionality, TIP adds the exploitation of hints for I/O opti- 

mizations. These hints disclose the file and byte range that future file reads will access. 

Table 5.1 summarizes the hint interface; see Chapter 3 for full details. The order in which 

hints are given indicates the order of the hinted accesses. Hints for named files are given 

to a pseudo-device, /dev/tip. VFS forwards hints on open file descriptors to the pseudo- 

device. The device stores both types of hints in kernel data structures which it forwards to 

the TIP hint manager. 

A hook in the VFS layer lets the hint manager match read requests against the hints. In 

this way, TIP knows how the application is progressing through its hints. Monitoring 

reads is better done in the VFS layer than from within the cache manager because it allows 

matching of exact byte ranges; the cache only sees requests for whole blocks. If the read 

matches a hint, then the read takes a special hinted-read path to and through the relevant 

file system. This special path serves two purposes. First, it allows TIP to make a positive 

hand-off of the hinted data to the application. Without this, a data race could result if 

matching a hint in the VFS layer lead the cache manger to eject data it thought was no 

longer needed before the application had a chance to read the data from the UFS layer. 

The second purpose of the hinted-read path is that it can be optimized for the anticipated 

request. For example, cache lookup operations can be avoided because the matching hint 
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already points directly to the requested block. How a hint points to a block and other 

aspects of hint management will be described in more detail in Section 5.3.1. 

In addition to providing a hinted-read path, file systems that support TIP must also 

provide a routine for TIP to call when it wants to prefetch a block. TIP's decision to 

prefetch is governed by its cost-benefit buffer management which is described in Section 

5.2. But, in the DU kernel structure, the cache manager does not have direct access to the 

disk. Instead, TIP calls a file-system-specific routine which performs such functions as 

mapping the logical file block to a physical disk block and building a request to send to the 

disk device driver. Before actually queuing a request at the disk, this routine calls back to 

TIP to give it the opportunity to build a cluster prefetch. I have only added such support 

for TIP to the UFS file system, but other researchers are working to add support to other 

file systems including NFS [Rochberg97]. 

As a last note on the relationship between TIP and the rest of the system, I should 

point out that the original UBC shares memory pages with the Virtual Memory (VM) sys- 

tem, and the partition between the two varies dynamically. TIP does not yet have an esti- 

mator for value of VM page usage and so it is not yet able to duplicate this functionality. 

Developing such an estimator is an interesting area for future research. For now, TIP sets 

a static partition of pages between the cache and VM and thus manages a fixed number of 

cache pages or buffers. Nevertheless, this unification of virtual memory and file objects 

means that memory objects backed by files, such as mapped files, reside in the cache and 

not virtual memory. TIP must manage such objects even if it does not accept hints for 

them. This issue is discussed further in Section 5.3.3. 

5.2 Implementation of cost-benefit buffer allocation 

The cost-benefit buffer allocator, as described in Chapter 4, relies on estimators for 

help when making allocation decisions. Buffer consumers (prefetches and demand 

accesses) estimate the benefit in terms of the common currency1 that they would derive 

from a buffer. Meanwhile, buffer caches, which could supply a buffer, estimate the com- 

mon-currency cost of giving up the least valuable of their tracked buffers. When the bene- 

The common currency is defined to be the change in I/O service time per buffer-access. See Sec- 
tion 4.1.2 for details. 
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Figure 5.2. Local value estimates in the implementation. Shown above are the local estimates of the value 
per buffer-access for the buffer consumers and suppliers that were developed in Chapter 4 and first 
summarized in Figure 4.9. Recall that the benefit of adding a block to a cluster prefetch (not shown) is the 
same as the cost of ejecting a block from the hinted cache. 

fit exceeds the cost, the allocator takes a buffer from the lowest-cost estimator and gives it 

to the greatest-benefit consumer. 

For review, Figure 5.2 presents the equations developed in Chapter 4 that are used to 

estimate costs and benefits in the TIP implementation. In this section, I describe how TIP 

applies these equations. 

Both the benefit of prefetching and the cost of ejecting a hinted block depend on the 

number of accesses until the block is accessed. Thus, the first step in applying these equa- 

tions is converting the hints to a sequence of accesses. For simplicity, TIP treats every ref- 

erence to an 8 KByte file block as one access as shown in Figure 5.3. When TIP matches 

an application read to a hint, it stores the index of the last access read in the variable con- 

Index which stands for consumption index. Then, when computing the benefit of prefetch- 

ing a block for a given access or the cost of ejecting a block referenced by a given access, 

the value of, respectively, x or y needed for the equations is the difference between this 

conlndex and the index of the access in the sequence. 
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Figure 5.3. The hinted access sequence. TIP hint ejection-cost and prefetching-benefit estimates are 
parameterized by the number of single-block accesses until a hinted block is referenced. But, application 
hints specify a file and an <offset, length> couple for a byte range within the file; they do not indicate 
whether the application will read the byte range in one large access or multiple small ones. Thus, the hints do 
not directly correspond to a sequence of block accesses. TIP expands the hints to an access sequence by 
counting every reference to a block as an access. The index of an access is its position in this sequence. This 
figure gives an example of how TIP expands a hint sequence into a hinted access sequence. 

The next step for a hint estimator is to declare the benefit it would derive from being 

given one buffer and the cost it would suffer from giving up one buffer. To do this, the 

estimator must determine which block it would most like to prefetch and which block is its 

least-valuable. Because the hinted access sequence is central to computing value esti- 

mates, the hint estimators are organized around accesses and not blocks or buffers. Thus, 

as will be described more later, the hint estimator maintains an ordered list of the accesses 

for which it would like to prefetch a block and not a list of missing blocks. Also, instead of 

tracking blocks in buffers, it tracks accesses. Thus, the estimator keeps a list of accesses it 

is tracking. Its least-valuable tracked buffer is the one caching the block referred to by the 

tracked access that is furthest in the future. 

For its part, the LRU estimator uses the LRU queue as an ordered list of the blocks it is 

tracking. Its least valuable tracked buffer is the one that was least recently used which is 

the one at the head of the LRU list. The cost of giving up that buffer is determined by 

which segment of the queue that buffer is in as described in the last chapter in Section 

4.3.1. 

To match the estimator with greatest benefit with the estimator with lowest cost, the 

global allocator separately ranks consumer and supplier estimators by value as shown in 

Figure 5.4. There is one estimator for each process that issues a sequence of hints and one 

for the LRU queue. Note that hint estimators may be both a consumer of buffers for 
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Figure 5.4. Schematic of cost-benefit buffer allocator. A procedure called TipPageAlloc serves as the 
mediator between buffer consumers and suppliers. When a demand miss, informed clustering or informed 
prefetching need a buffer, they call TipPageAlloc with a bid expressing the benefit they would derive from a 
buffer. TipPrefetch bids for the estimator ranked with the greatest benefit in a list of estimators that would 
like a buffer for prefetching. TipLvbPick picks a buffer from the estimator ranked least-valuable in a list of 
the estimators that can supply buffers if the bid exceeds the cost. See text for further details. 

prefetching and a supplier of buffers from its cache of hinted blocks. The estimators main- 

tain lists as needed to generate their estimates. 

The prefetcher, invoked by calling TipPrefetch, calls TipPageAlloc to bid the greatest 

benefit for a buffer. TipPageAlloc first calls TipLvbPick to find the globally least valuable 

buffer (the min-max buffer) and then reallocates the buffer if the bid exceeds the cost. 

Other consumers only want buffers occasionally and they also call TipPageAlloc to bid for 

a buffer. For example, UFS does this when there is a demand miss for which it needs a 
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buffer.  And, the cluster prefetcher does this when a disk read on which it can piggyback 

prefetches is about to be queued at the disk. 

In Section 5.2.1,1 describe the prefetcher and what is needed to generate prefetching 

benefit estimates. Section 5.2.2 identifies the requirements for clustered prefetching. Sec- 

tion 5.2.3 reviews the algorithm for identifying the min-max buffer. Section 5.2.4 identi- 

fies the functions estimators must provide to support the allocation algorithm. Section 

5.2.5 describes the nexus data structure which ties estimators to buffers to make finding 

value estimates for blocks efficient. Finally, Sections 5.2.6 and 5.2.7 describe the different 

strategies that the LRU and hinted cache estimators use to take advantage of the nexus 

data structure and provide the functions needed by the allocation algorithm. 

5.2.1 Informed prefetching 

The prefetching module ranks hint estimators according to the normalized benefit of 

prefetching the first missing block in their hinted access sequence. The benefits are com- 

puted using the prefetch value estimate in Figure 5.2. This benefit estimate depends on x, 

the number of accesses until the missing block will be accessed. Thus, computing the ben- 

efit of prefetching for a hint estimator requires knowledge of which is the next missing 

block in the sequence, the block's location or index in the sequence, and the index of the 

hinted block last consumed by the application. 

To make this information easily available, the hints are expanded into the hinted 

access sequence which is stored as a linked list associated with the estimator. TIP runs 

down the list to find the first missing block. It stops at the prefetch horizon because 

beyond that point, the benefit estimate is zero, and no buffer would be allocated to 

prefetch a missing block even if one were found. TIP removes accesses from the head of 

the list as it checks them to avoid rechecking them in the future.3 The difference between 

the index of the hinted access to this first missing block and the application's current con- 

sumption index, conlndex, determines the parameter x in the benefit calculation. 

UFS also calls TipPageAlloc to obtain buffers for sequential readahead. These are allocated buff- 
ers with the same priority as demand misses. It would be useful to develop an estimator for the benefit of 
heuristic prefetching, but this dissertation focuses on prefetching according to hints and so leaves this as an 
area for future research. 

Should a cached or prefetched block within the prefetch horizon be ejected, the hinted accesses 
that reference it could be reinserted at the head of the list. 
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The TipPrefetch routine uses the greatest normalized benefit among the estimators to 

bid for a buffer. If it obtains one, it calls the file-system-specific routine to initiate a 

prefetch of the first missing block in the estimator's hinted access sequence. Before queu- 

ing the prefetch at the disk, the file-system-specific routine calls TipKluster to try and 

build a cluster prefetch as described in the next section. The estimator computes a new 

prefetching benefit for the next missing block. The benefit is normalized and the ranking 

of the estimators adjusted. TipPrefetch continues bidding for buffers until it fails to obtain 

one or no estimator has a positive prefetching benefit. 

When a process performs a hinted read, all accesses in its hinted sequence move 

closer. This could change the benefit of prefetching for the processor. Thus, after a hinted 

read, the prefetching benefit estimate for the process is updated and TIP calls TipPrefetch 

to see if the system should prefetch some more blocks. The prefetching benefit does not 

change for the other processes, so their benefit does not need to be recomputed. However, 

after an application consumes some hinted blocks, new buffers may become available for 

prefetching. Or, the completion of writes of dirty buffers may make buffers available. In 

either case, the prefetcher gets another chance to bid for a buffer. In general, whenever an 

event occurs that may change either the benefit of prefetching or the cost of ejecting the 

globally least valuable buffer, the affected estimates are updated and a call to TipPrefetch 

is made to see if the prefetcher's bid for a buffer might now be successful. 

5.2.2 Informed clustering 

Clustering assembles separate, contiguous disk accesses into a single larger access that 

increases disk workload sequentiality and that decreases the number of disk access and 

therefore the CPU overhead of performing disk accesses. Informed clustering exploits 

hints to build clusters. 

TTP builds clusters opportunistically on disk accesses4 that are about to be queued at 

the drive. (Once a request has been queued at the disk, it cannot be changed, so clusters 

built around a request need to be built before the request is queued.) One could imagine 

scanning the entire hint sequence to determine the optimal clustering of requests. But, in 

TIP only builds informed clusters on other prefetches. In my benchmark suite, hinted accesses 
tend to be disjoint from unhinted accesses, so informed clustering opportunities on unhinted accesses are 
extremely limited or nil. DU with or without TIP builds clusters for heuristic sequential readahead. 
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keeping with the cost-benefit approach of one-at-a-time buffer allocation that tries to 

approximate gradient descent on I/O service time, TIP does not do this. Instead, it bids for 

buffers to add to a cluster one-at-a-time. 

At its core, the procedure for building a cluster is as follows. Starting from a block 

about to be read from disk, work first to extend the request to include blocks after the 

requested one. If the next contiguous block is not already present in the cache, check if 

there are any hints for it. If so, compute the cluster prefetch benefit for the block and bid 

for a buffer. If one is obtained, add the block and buffer to the cluster and continue trying 

to extend the cluster by one more block. Otherwise, give up, and repeat the procedure 

going in the reverse direction from the original block. When the cluster can't be extended 

any further in that direction either, queue the cluster request at the disk. 

The key operations in this algorithm are determining if a disk block is cached, deter- 

mining if there are any hints for an uncached disk block, and determining where in the 

hinted access sequence these hints fall so that a benefit can be computed for adding the 

block to the cluster. 

Unfortunately, because the file cache is organized by logical file block and not by disk 

block, the only way to determine if a particular disk block is already in the cache is to iter- 

ate over every block in the cache, mapping each to its disk block and checking if it is the 

desired block. Searching every cached block is bad enough, but hints are also given in 

terms of file byte range, not disk blocks, so either hints would all have to be mapped to a 

disk block and then indexed by disk block, or else hints, like cache buffers, would have to 

be searched exhaustively to see if any referred to the contiguous disk block.5 

To get around this problem, TIP takes advantage of the fact that UFS tries to store log- 

ically contiguous file blocks in physically contiguous disk locations. This policy makes it 

likely that the blocks that are physically contiguous to a particular access are also logically 

I could have reorganized the whole cache around disk blocks, but a file-block organization has its 
own advantages. For example, the file-block organization makes it easy to use the same structure to cache 
blocks from file systems such as NFS which don't store their data on the local disk. It also means that hinted 
blocks can be found in the cache without first mapping the hints to disk blocks. Furthermore, changing the 
cache to a disk-block organization would have necessitated changes in all of the file systems as well as the 
virtual memory system which all assume a file-block organization. In implementing TIP, I wanted to keep 
changes as localized as possible. I could have added a disk-block structure on top of the file-block structure, 
but in addition to necessitating the mapping of all hints to disk blocks, it would have added CPU and mem- 
ory overheads to maintain the duplicate structures. I did not seriously consider this option. 
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contiguous to it. In the UNIX file system, the disk addresses of neighboring logical blocks 

are stored in neighboring elements of an array [Leffler89], so the number of physically 

contiguous blocks before and after an initial block can be quickly determined when the 

initial block is mapped to disk. TIP limits its attempts to build clusters to those blocks 

which are both logically and physically contiguous.6 

It is easy to check if these logically contiguous blocks are already present in the cache, 

but this does not address the issue of finding hints for the ones that are uncached. In pro- 

viding this functionality, TIP optimizes for speed at the cost of memory. TIP allocates a 

ghost buffer, like those used in the LRU queue and described in Section 4.3.1, for hinted 

but uncached blocks. To this ghost buffer, TIP appends a list of all appearances of the 

block in any hinted access sequence. When TIP does the cache lookup to see if a contigu- 

ous block is cached, it finds the ghost buffer, which tells it the block is not already cached, 

and it has a list of all hints for the block. TIP then loops through this list of hinted accesses 

and calls the estBid function of each access's estimator to obtain a bid for inclusion of the 

block in the cluster. TIP then calls TipPageAlloc with the maximum of these bids and, if it 

gets a buffer, adds the block to the cluster. Shortly, there will be more on estimator func- 

tions and the nexus data structure that links hinted accesses to buffers. 

5.2.3 Allocating the min-max buffer 

The prefetcher, cluster prefetcher, and demand accesses call TipPageAlloc1 with a bid 

to obtain a buffer. This routine finds the min-max buffer8, determines if the cost of eject- 

ing it is less than the bid, and if it is, reallocates the buffer. The algorithm for finding the 

min-max buffer was first described in Section 4.3.5. For convenience, Figure 5.5 is a 

reprise of the pseudocode for the algorithm. The crux of the algorithm is the lazy evalua- 

tion of the global value of a buffer. As described in Chapter 4, it is this lazy evaluation that 

allows the independent estimators to estimate the cost of only their least valuable buffer. 

TIP assumes that blocks at sequential disk addresses are stored contiguously on disk, even though 
this is not always true for SCSI disks. Actually, because the data is usually stored on a disk array, there is 
known to be a break in sequentiality at stripe-unit boundaries. TIP tries to build up clusters to full stripe units 
which are 64 KBytes or 8 blocks in size and does not build clusters that span multiple stripe units. 

7 The fact that in Digital UNIX all buffers are one page in size leads to this choice of name. 

This is the globally least-valuable buffer. 
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start: 
/* all estimators have already computed the cost of their */ 
/* minimally valued tracked block and these costs have */ 
/* been normalized for global comparison */ 
estimator with lowest global cost { 

names its least valuable block; 
ceases tracking the named block; 
computes value of new least valuable block it is tracking; 
submits new value for normalization for global comparison; 

} 
/* check that no estimator values named block more highly */ 
foreach estimator { 

query to see if estimator values named block more highly; 
if yes { 

/* block is saved from replacement */ 
valuing estimator { 

begins tracking saved block; 
if saved block is now its least valuable { 

computes value of new least valuable block; 
submits new value for normalization for 

global comparison; 
} 

} 
goto start; 

} 
} 

Figure 5.5. Algorithm for identifying the min-max buffer (reprise). This algorithm lazily evaluates the 
global value of a buffer. Estimators nominate their least valuable buffer as the globally least valuable. The 
least valuable of the nominations becomes the candidate. To verify that the candidate is indeed the globally 
least valuable, each estimator is given the opportunity to save the buffer from replacement if it values the 
buffer highly. If one saves the buffer, the process repeats. The mechanism of tracking and only nominating 
blocks that the estimator is tracking guarantees that cycles do not occur and that the algorithm makes 

In TIP, the estimators cooperate with a global 'least-valuable buffer' (LVB) module to 

implement the lazy-evaluation algorithm. TipPageAlloc takes care of the mechanics of 

reallocating a buffer from one block to another, but relies on TipLvbPick to identify the 

min-max buffer. Figure 5.6 shows the procedural flow from TipPageAlloc to TipLvbPick 

and the procedural interactions between the estimators and the LVB module. 

The LVB module maintains the list of estimators that could supply a buffer that is 

sorted by normalized ejection cost shown in Figure 5.4. TipLvbPick takes advantage of the 

list to quickly find the estimator whose least valuable block is least valuable among all the 

estimators. Whenever an estimator computes a new value for its least-valuable buffer, it 

calls TipLvbUpdate to have the new value normalized for global comparison and the esti- 

mator's position in the list adjusted if necessary. 
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check free list 
for a page 

take page from VM 
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allocate a page 
from the buffer pool 

keep trying if for a demand access 

TipLvbPick() 

while bid is greater than lowest-cost, 
pick pages from lowest-cost estimator 
until min-max block is found 
or there are no available pages 

estPick() 
pick block for 
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great enough to save 
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notify allocator     start tracking block if 
of new cost cost is great enough 

if newly-tracked block 
is estimator's least valuable 

TipLvbUpdateQ 
notify allocator 
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Figure 5.6. Procedural flow for page allocation. After checking for free pages and whether the cache 
should grow, TipPageAlloc calls TipLvbPick to ask the lowest-cost estimator to pick blocks for ejection and 
query other estimators to verify that the picked block is indeed the globally least-valuable, min-max block. 
The estimators call TipLvbUpdate to declare the cost of giving up of their new least-valuable buffer. 

The LVB module requires estimators to provide two functions. First, TipLvbPick calls 

the estPick function of the least valuable estimator when it wants the estimator to give up 

its least-valuable block. Then, to see if any estimator wants to save the block from replace- 

ment, TipLvbQuery calls the estQuery function of every estimator that values the block to 

see if the estimator would like to save the block from replacement. Commonly, estimators 

also support an estUpdate function for internal use that updates the estimator's local esti- 
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mate of ejecting its least-valuable buffer and therefore calls TipLvbUpdate to update it's 

global value. 

In implementing its estPick function, an estimator must be able to identify its least 

valuable tracked block. It must also be able to stop tracking the block when it gives up the 

block. To update their value estimate for their new least valuable buffer after a pick, esti- 

mators must also be able to identify the next to least valuable buffer, and ultimately every 

tracked buffer in turn. The LRU and hint estimators implement these operations differ- 

ently, as will be described in Sections 5.2.6 and 5.2.7. 

At a global level, implementing TipLvbQuery requires a method of finding every esti- 

mator that values a particular block. And, when TipLvbQuery calls an estQuery function, 

the called estimator needs to be able to estimate the value of the block it is being queried 

about. TIP accomplishes this by asking every estimator to attach a marker to every block it 

values. In the marker, estimators can store some data that helps them estimate the value of 

the block. Then, by calling the appropriate estQuery function for every marker attached to 

a block, TipLvbQuery can be certain that it has queried every estimator that values the 

block. 

Hint estimators value blocks they have hints for. As was the case with clustering, TIP 

is faced with a need for finding all hints for a block. The list of hinted accesses attached to 

every buffer to generate cluster bids also serves as the list of markers for hint estimators. 

When TipLvbQuery calls the estQuery function for an access on the list, the hint estimator 

has only to look at the index of the access to compute its estimate of the value of the block 

for that access. Note that because a single hinted access sequence may reference a single 

block multiple times, and that because hint estimators add a marker to the list for every 

access to the block in the hinted sequence, TipLvbQuery may query the same estimator 

multiple times about the same block, once for each access to the block. As mentioned 

above, estimators track accesses, not blocks or buffers. If an estimator does not save a 

block based on an access in the distant future, TipLvbQuery will give it another chance to 

save it based on another access in the same sequence that is imminent. 

The LRU estimator values buffers in its LRU queue. Conceptually, the LRU estimator 

adds a marker to each buffer in its queue and stores the segment number for the buffer so 
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name function 

estBid generate bid to cache block; used to build clusters 

estPick pick a block for ejection; stop tracking block 

estQuery save & track block if valuable 

estlnval stop tracking block; used when files are deleted 

estCreate create a new estimator 

estDestroy deallocate estimator 

(estUpdate) update cost estimate (optional; for internal use only) 

Figure 5.7. Estimator operations. These are the six functions common to all estimators plus one that is 
commonly implemented for internal estimator use. See the text for details. 

it can easily compute its value. The actual implementation differs from this slightly as will 

be discussed in Section 5.2.6. 

5.2.4 Estimator functions 

Scattered through the previous sections, are references to various functions that esti- 

mators must implement to support the prefetching and allocation algorithms. Figure 5.7 

tabulates these and a few additional functions. These are the functions that a new estima- 

tor would have to support to be integrated into the TIP buffer allocation system. 

TipLvbBid calls the estBid function to obtain bids for caching a block. The cluster 

prefetcher calls TipLvbBid to determine the benefit of adding a block to a cluster. TipLvb- 

Pick calls estPick when is wants the least-valuable estimator to name and stop tracking its 

least-valuable block. This pick starts the process of identifying the min-max block. 

TipLvbQuery calls estQuery to see if any estimator values an already cached block highly 

enough to save it from ejection and start tracking it. TipLvbPick uses the query operation 

for the lazy evaluation of buffer value. The cluster prefetcher also uses it to cause an esti- 

mator to start tracking a clustered block if the bid for a buffer for clustered prefetch turns 

out to be successful. 

In addition to these functions which were mentioned earlier, estimators must support a 

few other functions. In particular, estlnval is needed in case a file is deleted or otherwise 

becomes unavailable which causes blocks for the file to be removed from the cache. The 

estCreate and estDestroy functions are needed to create and destroy particular instances of 

an estimator. The LRU estimator is created at boot time and never destroyed, but hint esti- 

mators are created and destroyed for processes as needed. 
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5.2.5 The nexus data structure 

From the foregoing algorithm descriptions, you should be getting the sense that the 

routine work of the TIP system is bookkeeping. The cache manager consists of many buff- 

ers, estimators, hints, hinted accesses, and the LRU list of unhinted accesses. The main 

challenge in generating estimates for cost-benefit buffer management is pulling together 

the estimator, block, and reference by the estimator to the block needed to apply the esti- 

mation equations. 

In implementing TIP, I optimized for speed and created lists to accelerate the many 

lookup operations. Because it is the reference linking an estimator to a block that is most 

often needed to compute value estimates, these lists are most often lists of references, not 

blocks or estimators. The prefetcher needs to find the next missing block in a hinted 

sequence, so it has a list of the hinted accesses for each hint sequence. Clustering 

prefetches requires benefit estimates from all estimators that would like a particular block 

prefetched. Similarly, querying requires cost estimates from all estimators that would like 

to keep a block cached. So, attached to each buffer is a list of markers or references by 

estimators to the buffered block. Lastly, to ease picking the least valuable tracked block 

and finding the next least valuable tracked block, each estimator maintains a list of the ref- 

erences that are the basis of its value estimates for the blocks it is tracking. 

In summary, estimators maintain multiple lists of references to blocks, and buffers 

maintain a list of estimator references to them. The TIP data structure that embodies an 

estimator reference to a buffer and links the two together is called a nexus. There is one 

nexus for every hinted access. And, there would also be one nexus for every block in the 

LRU list, but for historical reasons, in TIP, nexuses for the LRU list are embedded in the 

buffer header. Multiple nexuses may link one estimator to a single block because an esti- 

mator may have multiple hints for the same block. Conversely, from every block, there is 

a separate nexus that links it to each estimator reference to it. Figure 5.8 shows how the 

nexus data structure links estimators and data blocks. 

9 There is also a memory advantage to having the LRU nexus embedded in the header. There, it 
occupies 20 bytes whereas a nexus requires 64. Most of the savings come from not needing links for the 
prefetching or hint lists of nexuses, nor for the buffer list of nexuses, nor from the nexus back to the buffer or 
the hint estimator. 
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estimator estimator estimator 

tipNex tipNex 

tipNex tipNex 

tipNex tipNex tipNex 

tipNex tipNex 

tipBuf cache buffer 

tipBuf cache buffer 

tipBuf I    ghost buffer    I 

tipNex tipBuf cache buffer 

Figure 5.8. TIP data structure overview. The key data structures in the TIP system are the cache buffers, 
the estimators, and the tipNex nexus structures that link them together. Not shown in the figure are the links 
from every tipNex back to the corresponding estimator and tipBuf. There is one nexus for every hinted 
access, and one nexus list for every hinted byte range. Thus, a hint estimator with multiple hints for a block 
may have multiple nexuses for the block. Every block that has a nexus has a corresponding tipBuf buffer 
header whether there is physical buffer caching that block or not. If there is no physical buffer, it is referred 
to as a ghost buffer. The tipBufs are organized into a hash table so that for any block, it is easy to find both 
the block, and any estimators that value the block. The nexuses are strung together in different ways to form 
prefetching and tracking lists for hint estimators. The LRU list could also be composed of nexuses, but for 
historical reasons, a virtual 'nexus' for the LRU estimator is embedded in the tipBuf structure. A flag 
indicates whether this 'nexus' is part of the LRU list or not. 

There are many references to blocks that are not currently cached. The whole idea of 

prefetching according to hints presumes that the hints may often refer to uncached blocks. 

Furthermore, the LRU estimator needs to detect that there would have been hits to blocks 

had the LRU queue been longer. TIP maintains headers for these ghost buffers. The head- 

ers are included in the file-block hash list so the LRU estimator can detect accesses to 

them and so that the cluster prefetcher can find hints for specific blocks quickly. 
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tipLruHead 

tipLn ghost buffers 

/ 

targetSize targetSize targetSize targetSize 

size size size size 

hits hits hits hits 

avg. hits avg. hits avg. hits avg. hits 

cost cost cost cost 

tipLruSegs 
array of 
segment 
descriptors 

tipLruSegs[0]    tipLruSegs[1]    tipLruSegs[2]    tipLruSegs[3] 

Figure 5.9. Data structures for the LRU estimator. The LRU queue is made up of a doubly-linked ring of 
tipBuf structures. Each tipBuf records which segment of the queue it is in as well as a status flag that 
indicates whether or not it is a ghost buffer. An array of tipLruSegs structures keeps track of per-segment 
data. When there is a cache hit, the segment number in the tipBuf is used to increment the hit count for the 
segment. When a tipBuf is released to the tail of the queue, buffers overflow from one segment to the next by 
shifting the segment pointers left so that no segment has more than targetSize buffers in it. The estimator 
periodically applies the LRU cost equation to each segment. The LRU estimator's least valuable buffer is the 
least-recently used non-ghost buffer in the queue which is pointed to by tipLruHead. The cost of losing it is 
the cost for the segment containing it. 

5.2.6 The LRU estimator 

Because, as mentioned above, the nexuses for the LRU estimator are embedded in the 

tipBuf buffer header structure, the LRU queue is a doubly-linked list of tipBuf structures 

as shown in Figure 5.9. Recall from Section 4.3.1 that to arrive at an approximation of 

H(n), the hit ratio for the LRU queue as a function of cache size, the LRU queue is broken 

into segments and the number of hits in each segment is recorded. As shown in the figure, 

an array of segment descriptors keeps track of segment boundaries, counts the hits to the 

different segments, and records the cost of shrinking the LRU queue when the head of the 

queue is in that segment. An index in each tipBuf records which segment it belongs to. 

This segment index is incremented when the buffer overflows from one segment to the 

next. 

To compute the cost estimate for each segment, the LRU estimator applies the equa- 

tion shown in Figure 5.2, using a moving average of the hit counts for the segment for h( 
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and the segment target size for IJ,-I. It computes the costs for the segments from right to left 

so it can keep track of the maximum cost for higher numbered segments. 

For the purposes of the lazy-evaluation algorithm, the LRU estimator's tracked buffers 

are those on the non-ghost portion of the LRU queue. Thus, the LRU estimator's least- 

valuable buffer is the one at the head of the non-ghost portion of the list which is pointed 

to by tipLruHead. The cost of losing the least-valuable buffer is the cost for the segment 

containing it. When TipLvbPick calls the LRU estimator's estPick function, it returns the 

value of the tipLruHead pointer, but leaves the buffer in the list. Instead of removing it, 

the estimator sets the buffer's ghost flag and moves the tipLruHead pointer to the buffer's 

left neighbor in the queue. In this way the estimator ceases tracking of the block just 

picked and identifies its new least-valuable buffer. 

When queried about a block, the LRU estimator only saves blocks it is already track- 

ing; that is, it only saves non-ghost buffers. One could imagine saving any block on the 

queue that was in a segment whose cost of ejection was high enough to save the block. 

But, I chose not to do this because, as explained below, doing so would only very rarely 

improve application performance, and because doing so would often add extra overhead to 

the system. 

Saving ghost buffers is unlikely to improve performance because there are few occa- 

sions in which saving such a buffer would lead to a cache hit. For the LRU queue to even 

consider saving a ghost buffer, it must first have picked the block for replacement to make 

it a ghost, something else must have saved the block from replacement, that something 

else must no longer want it cached, the block must still be on the LRU queue, and the cost 

of ejecting an LRU block must have grown relative to the cost of ejecting other blocks or 

the LRU estimator would not be able to save a block it previously picked for replacement. 

The something else must be either a hint estimator, or the fact that the block was dirty and 

could not be flushed. The dirty-block case, which is fairly common, is considered below. 

If a hint estimator saved it, but is now is willing to replace it, it is most likely that the 

hinted access occurred. It is unlikely that both the LRU queue's ghost buffer did not get 

pushed off the end of the LRU queue while the hint estimator tracked the block and that 

This ghost flag is used only by the LRU estimator to record that it is no longer tracking the buffer. 
True ghosts, tipBufa with no associated buffer, have a nil buffer pointer. 
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the relative LRU cost of ejection grew in that same time period. But, even supposing that 

this unlikely chain of events occurred and the LRU estimator does save the block, doing 

so only helps performance when there is an unhinted access that finds it there in the cache. 

But, at least for the benchmark applications under study here, accesses to particular blocks 

tend to be either all hinted or all unhinted. Just the fact that five of the six applications hint 

over 85% of the block accesses shows that there is little overlap between hinted and 

unhinted accesses. 

Being unlikely to improve performance would not by itself be a persuasive argument 

against saving ghost buffers, but saving them can also hurt performance. The most com- 

mon opportunity to save blocks is when the LRU picked a dirty block for replacement and 

the write has completed. If the LRU saves the block, it will in all likelihood pick it for 

replacement almost immediately; the LRU already picked it once, so it cannot be too valu- 

able. Having the LRU save and repick a block would not be bad except that saving ghost 

buffers would make it more expensive for the LRU estimator to find its least-valuable 

buffer because it would destroy the invariant that all buffers to the left of tipLruHead are 

real and all buffers to the right are ghosts. Specifically, if the saved block is in the same 

segment as the current head of the LRU list, the estimator may have to search the entire 

segment to see if the saved block is to the right or left of the current head and therefore is 

or is not the new head of the list. Further, if the LRU picks the head for replacement, it 

may have to search through many buffers to find the new head. Thus, saving ghosts adds 

CPU overhead and seems, on balance, likely to hurt, not help performance. 

5.2.7 The hinted cache estimator 

The value of a hinted block is a function of its position in the hinted access sequence. 

The estimator expands hints into a hinted access sequence as described earlier in Figure 

5.3. As it expands hints, it builds a list of the sequence with tipNex data structures, mark- 

ing each with the index of the access, and adding each to the list of nexuses for the block 

and to the list of accesses for the prefetcher. When the cluster prefetcher runs down the list 

of nexuses for the block, it asks the estimator that put each nexus on the list whether it 

wants to save the block for that nexus. Thus, if a block appears multiple times in a single 

hinted access sequence, then the estimator for that sequence may be called multiple times 
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and asked if it wants to bid or save the block. But, each call will pass a pointer to the nexus 

that triggered the call. The estimator has only to look at the index stored in the nexus to 

compute its value and decide what it would bid for the cluster prefetcher to fetch the block 

or whether it can save the block from replacement. 

If the estimator does save the block, or if the prefetcher prefetches the block, then the 

estimator must start tracking the block. The hint estimator maintains a linked list, not of 

the blocks it is tracking, but of the accesses that it is tracking. The list is sorted by the 

index number of the access. Thus, the estimator's least valuable block is the one that is last 

on its list of tracked nexuses. It is thus easy for the estimator both to compute the value of 

its least valuable block and to identify its next least-valuable block if it is asked to pick a 

block for replacement. If the picked block appears at another position in its access 

sequence, then the lazy evaluation will give it a chance to save the block based on these 

other hints. 

5.3 Other implementation challenges 

In the previous sections, I described the key aspects of the TIP implementation of cost- 

benefit buffer management. In the course of implementing the system, I ran into a number 

of problems. In this section, I describe some of those problems and my solutions to them. 

These problems include: the potential for the hint estimator data structures to consume an 

unbounded amount of memory when applications issue large numbers of hints; the lack of 

floating point arithmetic inside the kernel for the computation of value estimates; the 

existence of mapped pages in Digital UNIX's LRU queue which may be accessed without 

the knowledge of the LRU estimator; the existence of buffers in the cache which no esti- 

mator wants to track, but which must be pickable to not be lost to the cache forever; and 

the potential for priority inversion in the disk queue if demand accesses must wait for a 

large batch of prefetches to complete. I address each of these problems in turn. 

5.3.1 Hint management and the caching horizon 

When applications give hints, TIP immediately allocates kernel data structures which 

store them in essentially the same format in which they are issued. Before TCP's cost-ben- 

efit allocator can take advantage of the hints, it must resolve the names of the hinted file to 

obtain the vnode that describes the file if one is not readily available from the open file 
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table, expand the hinted byte ranges into the hinted access sequence, allocate a tipNex 

structure for each access, and link the structure into the prefetching list and the per-block 

list of nexuses. If there is not already a tipBuf for each referenced block, then it must allo- 

cate one, thereby creating a ghost buffer, so that it can add the block to the cache's hash 

table. This whole process is called hint resolution. 

When a hint is fully resolved, the nexuses, ghost buffers, and vnodes may consume a 

substantial amount of memory. Because a process may issue large numbers of hints at 

once, resolving all hints immediately could consume an arbitrarily large amount of mem- 

ory. Fortunately, it is not necessary to resolve an arbitrary number of hints to take full 

advantage of all of the hints that have been issued because even if resolved, the cost-bene- 

fit allocator would not devote any resources to hints for accesses that are very far in the 

future. The prefetcher only needs hints to be resolved out to the prefetch horizon. Beyond 

that, accesses which are candidates for informed caching or clustering need to be resolved. 

But, because the cost of ejecting a hinted block (which is the same as the benefit of cluster 

prefetching a block) decreases with the number of accesses until the block is accessed, 

there is some number of accesses beyond which any block, if found, would be the least 

valuable in the cache and therefore the next to be replaced. Specifically, if the cost of 

ejecting the block according to the index of the access in the sequence is less than the cost 

of ejecting the current least-valuable block, then the hinted cache estimator could not use 

that hinted access to save the block from replacement and the cluster prefetcher could not 

use it to add the block to a cluster. The cost-benefit allocator is not willing to devote any 

resources to that access or any access later in the sequence. The point in the sequence at 

which the cost falls below the cost of ejecting the currently least-valuable block is called 

the caching horizon. Exactly where the caching horizon lies depends dynamically on the 

cost of ejecting the currently least-valuable block in the cache. TIP only resolves hints out 

to the caching horizon. 

Even without resolution, the hints themselves could consume an unbounded amount of memory. 
The current TIP implementation puts a hard limit on the number of hints it stores and discards any additional 
hints. None of the benchmark applications exceed this limit. But, dropping hints on the floor discourages 
applications from giving as many hints as possible as early as possible. A better solution would be to store 
overflow hints on disk and bring them in as needed to be resolved. If an application issued so many hints that 
there was no available disk storage, TIP could return an error code that informed the application that further 
hints will be dropped on the floor until the application consumes some of the hints it has already issued. 
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In general, there is a moving window of the hinted access sequence that is resolved. As 

the application performs hinted accesses, TIP deallocates the nexus structures for those 

accesses. Meanwhile, the application moves closer to later accesses in the sequence and 

therefore pushes the caching horizon later in the sequence. TIP records which hint was last 

resolved so that it can quickly resume resolution. 

5.3.2 Using integer arithmetic to compute cost and benefit estimates 

The cost and benefit expressions in Figure 5.2 include division operations that could 

produce fractional, non-integer results. If implemented at user level, it would be natural to 

use floating point arithmetic to calculate the cost and benefit estimates. Unfortunately, use 

of the floating point registers is disallowed in the kernel so that these registers do not need 

to be saved and restored on every system call and interrupt. Thus, integer math must be 

used to compute cost and benefit estimates. 

TIP applies a few simple techniques to adapt the estimates to integer arithmetic. 

Essentially, the approach is to use a loose form of fixed point arithmetic and take advan- 

tage of the fact that the estimates will only be compared to each other so only relative, not 

absolute values are important. First, TIP expresses the Thit, Tdriver, and Tdisk parameters in 

an integer number of microseconds instead of fractions of a second. Second, to gain preci- 

sion when dividing a time value by the potentially large number of accesses that a buffer 

may be tied up, the parameters are left-shifted by 10 which is equivalent to multiplying 

them by 1024. Finally, when normalizing local estimates for global comparison, instead of 

multiplying estimates by the number of access per second that an estimator represents, 

TIP eHminates the division by time and simply multiplies by the number of accesses in a 

time period. I now give example code fragments for the estimators to clarify these tech- 

niques. 

When prefetching for a hint sequence, the benefit of prefetching a block x accesses in 

advance, but within the prefetch horizon, 0 < JC < P, is, from Figure 5.2, 

'disk 

TIP implements this as 
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benefit   =   (Tdisk«10) / ( (x*x) -  x) . 

The disks used for the testbed described in the next chapter have an average access time of 

15 milliseconds, so expressed in microseconds the value of Tdisk is 15000. 

The cost of ejecting a block y accesses in advance of its use when y is beyond the 

prefetch horizon, y > P, is 

T /-i    4. driver 
Reject = -JZp-   • (5-2) 

This is also the benefit of adding the block to a cluster prefetch. TIP implements the com- 

putation as 

cost  =   (Tdriver«10) / (x-pfHorizon) . 

The disk driver overhead is on the order of hundreds of microseconds. 

The cost of taking a block from the LRU estimator depends on the number of the seg- 

ment which currently holds the head of the LRU queue. 

CostT„TT = max.>.I—ri-r[(T   ■   -7\.,)  . (5.3) LRU J-l\A\s.\ I      mlss        hit' V-'-V 

In this equation, hj is the number of hits in a segment, A is the total number of unhinted 

accesses (which rely on the LRU queue), and \sj\ is the target number of buffers for the 

segment. In the global normalization step, this estimate would normally be multiplied by 

the number of accesses, A. TIP takes advantage of the division by A followed by multipli- 

cation by A; it skips the division and multiplies LRU estimates by 1 to normalize them. It 

computes the cost in two steps. First, it computes the marginal cost for each segment and 

then runs through the segments to determine the maximum of the costs for higher num- 

bered segments. The code for computing the marginal cost for one segment is 

segCost = (segHits * ( (Tmiss - Thit)«10))/ targetSize. 

The value for segHits is a moving average of the number of hits in 1024 accesses and 

therefore is a value between 0 and 1024. Computation of moving averages is described 

below. The time for a cache hit, Thit, is on the order of hundreds of microseconds. The 
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time for a cache miss, Tmiss, is the sum of Thit, Tdriver, and Tdisk and so the 15000 micro- 

second disk access time dominates its value. 
/ 

As mentioned above, TIP normalizes value estimates by multiplying them by the num- 

ber of accesses. Actually, it uses a weighted moving average of the number of accesses to 

each estimator out of a total of 1024 accesses to the system as a whole. TIP counts the 

number of accesses to each estimator, and after a total of 1024 accesses to all estimators, it 

recomputes the moving averages: 

new_average = (old_average + (3 * current_count)) / 4. 

When TIP updates the averages and therefore the normalization factors, it also updates the 

cost estimates for the LRU segments and uses this same weighting for the number of hits 

to a segment in a given period. 

5.3.3 Managing mapped pages with the LRU annex 

In Digital UNIX, data blocks from mapped files are kept in the file buffer cache and 

are not moved to the virtual-memory system. These mapped files pose a special problem 

for the LRU estimator because accesses to mapped blocks are unobservable memory ref- 

erences. Thus, the LRU estimator cannot know when mapped blocks are referenced and 

therefore cannot include accesses to them in its estimation of H(n). How can the LRU esti- 

mator obtain an accurate estimate of H(n) that includes mapped blocks? Because mapped 

files are in regular use in Digital UNIX for such things as shared libraries, this is not a 

strictly academic question. Some answer is needed to build a working TIP system. 

One approach is to bound the time since the last access by unmapping pages, thereby 

forcing page faults which go through the normal read code-path. Faults on cached pages 

are then equivalent to cache hits and unmapped pages which have not caused a fault are 

known not to have been referenced since the page was unmapped. This was the strategy in 

the initial implementation. The first few segments of the LRU queue were designated the 

active region of the queue and contained both mapped and unmapped blocks. Any block 

found to be mapped as it overflowed from the last active segment to the first inactive seg- 

ment was unmapped and reinserted at the tail of the LRU list. The inactive region of the 

queue thus contained only unmapped blocks. Note that within the active region, the esti- 

mation of H(n) is poor and that, furthermore, the active-page remappings in the first inac- 
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tive segment drive up the number of hits in that segment. For these reasons, the LRU 

estimator has less reliable information to use to shrink the LRU queue any smaller than the 

active region plus the first inactive segment. Thus, it is desirable to have a small active 

region and achieve a tight bound on the time since the last reference to a mapped page. 

Unfortunately, a small active region in the LRU queue results in the continual mapping 

and unmapping of active pages which can add substantial CPU overhead and slow the sys- 

tem down. 

For low overhead, but an accurate estimate of H(n), the system needs to identify active 

mapped pages and avoid unmapping them too frequently while keeping the size of the 

active region small. TIP achieves this with a separate queue of blocks called the LRU 

annex. When mapped blocks overflow from the active region, TIP moves them to the tail 

of the annex list instead of the general LRU list. Reads that hit a block in the annex leave 

the block in the annex. Periodically, the system examines a fraction of the blocks in the 

annex, and if they are no longer mapped, it moves them back to the regular LRU queue. 

Otherwise, it unmaps them and moves them back to the tail of the annex. The key benefit 

of the annex is that large numbers of regular file accesses do not cause mapped blocks to 

be unmapped at a high rate. The regular blocks move down the LRU list without disturb- 

ing the mapped blocks in the annex. 

In the default configuration, the file cache has a total of 1536 8 KByte buffers, there 

are 14 segments, the active region of the LRU queue consists of just the first segment 

whose target size is 236, and the other 13 segments have a target size of 100. There is one 

additional segment that holds overflow tipBufs. The annex is limited in size to a maximum 

of 500 blocks although it is typically about half that size. 

The LRU annex is essentially a crude approach to managing virtual-memory pages. 

VM pages are also mapped into a process' address space making accesses to them unob- 

servable. The annex is crude in that it fixes the size of the active region, puts a hard limit 

on the size of the annex, and does not use any cost or benefit functions to determine how 

many buffers to leave in the annex. A better approach might be to split the annex into 

active and inactive regions and use cache hits that remap blocks in the inactive portion of 

the annex as an indication of the amount of activity for the mapped pages. If there were a 

lot of hits, there would be benefit in saved overhead to growing the active region. If there 
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were not many hits there would be little additional overhead if the active region were 

shrunk. Furthermore, hits in the inactive region could be profiled just like the regular LRU 

queue to estimate the cost of shrinking the size of the annex's inactive region. In this way, 

the cost-benefit buffer allocator could be used to size the annex dynamically. This 

approach could also be applied to the active and inactive regions of the queue of VM 

pages. In this way, VM management could be integrated into TIP and cost-benefit analysis 

could be used to manage VM pages and cache buffers as a single memory resource. 

5.3.4 The orphan estimator 

Because TipLvbPick obtains candidate replacement blocks by asking estimators to 

nominate one of their tracked blocks for replacement, any cached block that is not tracked 

by some estimator will never be replaced. Thus, whenever a buffer is not busy, wired, or 

otherwise unavailable for replacement, at least one estimator must be tracking it. A special 

orphan estimator tracks blocks that neither the LRU nor any hint estimator wants to track. 

Examples of such blocks include those that are dirty when chosen for replacement and 

blocks tracked for a now aborted process. Whenever a previously busy (at the disk), held 

(by a process), or wired block is released back to the cache and that page is not tracked by 

any estimator, then the block is transferred to the orphan estimator which begins tracking 

the buffer. Similarly, at any other time, such as hint cancellation or process termination 

when orphan blocks are created, the orphans are transferred to the orphan estimator. 

Through the orphan mechanism, TIP ensures that all replaceable blocks are in fact pick- 

able and therefore not lost to the system. 

Orphan blocks have no estimated value. Thus, whenever a buffer is needed, orphan 

blocks are the first to be replaced. The orphan estimator maintains its tracking list in FIFO 

order. Even when the orphan estimator picks a block for replacement, the system still calls 

TipLvbQuery to make sure there is still no estimator that values the block highly enough to 

save it from replacement. 

5.3.5 Disk driver support for prefetching 

The TIP system has two device driver enhancements to support prefetching. First, a 

striping driver makes possible I/O parallelism within a single file system. Second, a low- 

priority prefetch queue limits how much prefetch accesses can delay demand accesses. 
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The striping pseudo-device makes multiple physical disks appear to be a single disk to 

the rest of the system. The striper breaks the single linear block address space it exports 

into stripe units of eight 8-KByte blocks or 128 512-byte sectors. It then assigns these 

stripe units in a round-robin fashion to the disks that make up the array. When the striper 

receives an I/O request, it maps the request to the appropriate disk and blocks within the 

disk and then forwards the request to the disk's driver. If a request spans multiple disks, it 

is broken into multiple requests which are sent to the different disks. When the individual 

disk requests complete, the results are reassembled and returned as the results of the single 

request to the array. However, both TIP and the UFS file system are aware of the stripe- 

unit size and do not issue requests that straddle multiple stripe units, so such spanning 

requests do not occur in normal operation. 

Because TIP may queue many prefetches at a time, demand requests could experience 

substantial delays if they were forced to wait for the prefetches ahead of them to complete. 

To avoid this problem, the striper maintains a special prefetch queue for each disk in the 

array. When the disk is idle, the striper issues up to two prefetch requests at a time to the 

disk. When one completes, it issues another unless a demand request arrives in the mean- 

time. By having two requests outstanding at the disk, the disk can begin processing the 

second prefetch while the system services the interrupt for the first request and queues a 

new request at the disk. On the other hand, demand requests never find more than two 

requests queued in front of them at the disk. The striper sorts the prefetch requests by the 

CSCAN12 scheduling discipline. 

In the future, it would be beneficial if disks could support a lower-priority queue for 

prefetch requests. Then the system could let the disk take advantage of its intimate knowl- 

edge of the data layout to schedule both demand and prefetch requests. It would also be 

possible to abort servicing a prefetch request if a demand request arrived. In this manner, 

demand requests would experience even lower delays behind prefetch requests and all 

requests would receive more efficient service from the disk. 

19 
CSCAN stands for circular scan. CSCAN services requests in increasing order of disk block 

address. When there is no queued request for a block address greater than the block last accessed, it next ser- 
vices the request with the lowest block address. Thus, CSCAN scans the disk surface in increasing order and 
then seeks back to begin a new scan. Some researchers refer to this algorithm as CLOOK [Worthington94]. 
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5.4 Conclusion 

Taking advantage of application disclosure of future file accesses for prefetching and 

caching is a bookkeeping challenge. To hold a block in the cache, a hint for the block must 

be found before the block is ejected. And, to prefetch a block, a hint must be found before 

the block is accessed. The main challenges in implementing a system that takes advantage 

of hints are performing these bookkeeping tasks efficiently and making replacement deci- 

sions without slow searches through large data structures. 

TIP's nexus data structure provides the key bookkeeping support for allocation by 

cost-benefit analysis. It ties both hints and the LRU queue to buffer headers for the blocks 

they reference. Ghost buffers, which have a buffer header but no data buffer, serve as 

cache placeholders for referenced but uncached blocks. Real and ghost buffers are orga- 

nized into a single hash table for quick access. And, the nexuses attached to each buffer 

header provide quick access to value estimates for the block whether it is currently cached 

or not. Thus, it is easy to check the value of a block before ejecting it, and it is easy to 

check whether a hint refers to real buffer or refers to a ghost that must be prefetched. 

The nexus makes it easy to find value estimates for a block, but identifying the glo- 

bally least-valuable block would still be costly if the global value of all blocks had to be 

determined before making a replacement decision. TIP's algorithm for the lazy evaluation 

of global buffer value avoids this need. It relies on the independent value estimators to 

rank the blocks they are tracking by their own local estimate of value. Both the LRU and 

hint estimator can do this without computing any cost estimates. For the LRU estimator, 

position in the LRU queue determines the value rank. For hint estimators, position in the 

hinted access sequence determines value rank. The algorithm then only needs to compare 

globally the values of each estimator's least-valuable block to determine which estima- 

tor's estPick function it should call to find a likely candidate for replacement. By calling 

the appropriate estimator's estQuery function for each nexus linked to the candidate block, 

the allocation algorithm ensures that the candidate block is indeed the least valuable 

before replacing it. It is this combination of quick local value comparisons and few global 

comparisons that makes the TIP implementation of buffer allocation by cost-benefit anal- 

ysis efficient. In the next chapter, I will quantify the computational overhead of the algo- 

rithm. 
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In addition to being efficient, the two-tier allocation algorithm also makes it easy to 

add new value estimators to the system. Any buffer supplier that supports the estPick and 

estQuery operations, and declares the value of its least valuable block in terms of the com- 

mon currency by calling TipLvbUpdate could be integrated into the system. 
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Chapter 6 

TIP Performance Evaluation 

The overall goal of informed prefetching and caching is to reduce the elapsed time 

required to run applications. Elapsed time is therefore the key metric of TIP system per- 

formance. In this chapter, I present the results of experiments that show that informed 

prefetching and caching in TIP are remarkably effective, reducing elapsed time by up to 

84%. Further, to better understand the contributions of the different components of the 

system, these experiments explicitly isolate the effects of informed prefetching and cach- 

ing. Detailed measurements of many aspects of system behavior are presented to shed 

additional light on why TIP performs the way it does. 

Because the benefit of prefetching and caching is workload-dependent, it is important 

to evaluate system performance under as broad a range of realistic workloads as possible. 

To that end, the benchmark suite used in this evaluation is the collection of six real-world 

applications described in Chapter 3. I first consider the performance of each benchmark 

running alone and then go on to consider performance when multiple applications are run- 

ning simultaneously. 

Nothing is free, and this includes TIP. Achieving the results it does comes at the 

expense of some additional CPU and memory overheads. Detailed traces quantify the 

CPU overheads. Simple calculations quantify the memory overhead. 
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6.1 Experimental testbed 

The testbed used to run the experiments described in this chapter is a Digital 3000/600 

workstation (SPECint92=114; SPECfp92=162), containing a 175 MHz Alpha (21064) 

processor, 128 MBytes of memory and two KZTSA fast SCSI-2 adapters each hosting up 

to five HP2247 1 GByte disks. This machine runs version 3.2c of the Digital UMX (DU) 

operating system. For comparison purposes, I present results for both the standard DU 

kernel and a kernel that has been modified to include the TIP buffer cache manager whose 

implementation was described in Chapter 5. 

The system's 10 drives are bound into a disk array by a striping pseudo-device with a 

stripe unit of 64 KBytes. This striper maps and forwards accesses to the appropriate per- 

disk device driver. Demand accesses are forwarded immediately, whereas prefetch reads 

are forwarded whenever there are fewer than two outstanding requests at the drive. The 

striper forwards two prefetch requests to reduce disk idle time between requests, but 

doesn't forward more to limit priority inversion of prefetch over demand requests. The 

striper sorts queued prefetch requests according to CSCAN. This striper is described in 

more detail in Section 5.3.5. 

The standard DU kernel has two features that make it a particularly strong base case 

for comparison: request clustering and aggressive sequential readahead. When DU per- 

forms multi-block reads or writes to contiguous disk blocks, it coalesces or clusters up to 8 

contiguous disk accesses into one large request. Because the file block size is 8 KBytes, 

this means that individual disk requests can range in size up to 64 KBytes. This request 

clustering has the same performance advantages as informed clustering: a significant 

reduction in the CPU overhead of performing disk accesses and an increase in efficient, 

sequential disk accesses. The algorithm that checks blocks for contiguity was modified to 

make it aware of the 64 KByte disk-array stripe unit and ensure that all clusters fit within 

a single stripe unit. 

DU's second notable feature is its very aggressive sequential readahead heuristic. In 

addition to prefetching data, the aggressive readahead serves to fetch clusters of blocks 

from the disk even when applications request only a single block at a time. Essentially, the 

file system initiates prefetches in proportion to the length of the current run of sequential 

accesses up to a maximum of 8 clusters of 8 blocks each. Thus, if an application sequen- 
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tially reads 4 blocks, then the system initiates readaheads for the next 4 blocks. These 

readaheads are queued as low-priority prefetch requests by the striper. This same reada- 

head algorithm is applied to unhinted accesses in the TIP system. As we will see, this 

algorithm is very effective for large sequential accesses. However, we will also see that 

such aggressiveness can hurt performance when accesses are more random. 

Another notable feature of DU is that it includes a unified buffer cache (UBC) module 

that dynamically trades memory between its file cache and virtual memory (VM). Unfor- 

tunately, as mentioned in Section 5.1, because TIP does not yet have an estimator for the 

value of VM pages, it cannot dynamically size the cache. For meaningful performance 

comparisons between the DU and TIP systems, I needed to eliminate cache size as a factor 

differentiating the two systems. Therefore, as mentioned in Section 5.1,1 fixed the cache 

size of both systems at 12 MByte (1536 8 KByte buffers). 

6.2 Measuring cost-benefit model parameters 

TIP's cost-benefit estimates depend on the model parameters defined in Chapter 4: 

Thit, the time to read a block from the cache, Tdriver, the CPU overhead of performing a 

disk read, and Tdisk, the average disk access time. To determine values for these parame- 

ters, I used a synthetic application to run a number of micro-benchmarks. The synthetic 

application repeatedly reads a sequence of random, unique blocks from a large file (512 

MBytes). The application determines the block sequence and then gives a hint disclosing 

the sequence for the first iteration. Hints for the next iteration are given at the start of the 

current iteration. Between each block read, the application computes for an amount of 

time given by the Tapp parameter. 

To measure Thip I set the sequence length to 1000, Tapp to 0, and the number of itera- 

tions through the sequence to 10. Because the sequence length is less than the cache size 

of 1536 buffers, the cache can easily hold the entire sequence. After preloading the 

sequence into the cache, I measure the time to required to perform the 10,000 block reads, 

all of which are cache hits. Because the stall time is zero, Thit is the elapsed time for the 

run divided by the 10,000 accesses. Using this method, I determined that Thit = 203 micro- 

seconds. 
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To measure Tdriver, I repeated the above experiments, except with a sequence length of 

2000. Because this sequence does not fit in the cache (and the hints are not used for cach- 

ing), there is a prefetch for every read. Thus, there is a total of Thit + Tdriver of CPU time 

per read. In the experiments, the elapsed time less the time spent stalled for I/O is the total 

CPU time. From this measurement and the value of Thit found above, I determined that 

Tdriver ~ 366 microseconds. 

Disk service time, Tdisk, depends heavily on the length of seek required, which makes 

assigning a single value to this parameter difficult. From direct measurements on a variety 

of applications including this synthetic benchmark, I found that average service times for 

random accesses were about 15 milliseconds, so this is the value assigned to Tdisk. 

Based on these parameter values, at boot time, TIP applies Equation (4.23) to compute 

a system-wide, static, upper-bound prefetch horizon, P, of 73 (using integer arithmetic). 

6.3 Single application performance 

To explore the contributions of the various optimizations to overall performance, I ran 

each of the benchmark applications in four configurations. First, as a baseline for compar- 

ison, I ran each application when it doesn't give hints on the standard Digital UNIX oper- 

ating system constrained to a fixed cache size. To evaluate how well TIP performs for 

non-hinters, I ran the unhinting applications on it (TIP, no hints). TIP applies DU's clus- 

tered readahead heuristic to unhinted accesses so the comparison to DU is fair. To deter- 

mine the effect of informed prefetching alone, I ran the hinting applications on a TIP 

system restricted to using the hints for prefetching and clustering within the prefetch hori- 

zon but not for informed caching (TIP, no caching). For these runs, the prefetch depth is 

statically set to the prefetch horizon, P =73. Finally, I ran the hinting applications on a 

fully-functional TIP system which exploits the hints for informed prefetching, clustering, 

and caching. I measured elapsed time and stall time for each of these configurations when 

running with disk arrays of 1, 2, 3, 4, and 10 disks. A bar chart reports the average elapsed 

and stall time of five runs. A separate table presents the numbers for CPU and stall time 

along with the 95% confidence interval for the average as computed using the sample 

variance and the student-t distribution. The CPU time presented is the difference between 

the measured elapsed and stall times. 
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Figure 6.1. Davidson access pattern. For this figure, the several files Davidson accesses are logically 
concatenated to map their block numbers to a global block number space. Davidson's file accesses were 
traced and every access was mapped to the corresponding offset within the global space. This graph shows 
the global offsets of Davidson's accesses as a function of application CPU time. Davidson's repeated 
sequential accesses to the 2089-block matrix file are clearly visible. 

To explore the effect of prefetch depth on application stall, a supporting graph shows 

stall for the TIP, no caching configuration when the prefetch depth varies from 0 to 256. 

Finally, to examine the effect of prefetching and caching on cache performance, I tabulate 

cache performance for all four configurations. The numbers are taken from the results on a 

single disk, but because prefetching and caching decisions in TIP depend primarily on the 

sequence of accesses and not on their timing, single-application cache performance is not 

sensitive to array size. Later, when I consider cache performance when multiple applica- 

tions are running, I will report numbers for multiple array sizes because array size can 

affect the interleaving of accesses from the multiple applications and therefore caching 

decisions. 

6.3.1 MCHF Davidson algorithm 

The Davidson algorithm benchmark, described in Section 3.4.4, repeatedly reads a 

16.3 MByte dataset sequentially in its entirety 60 times. Figure 6.1 is a graphical represen- 

tation of its access pattern. Figure 6.2a presents the results for the four configurations and 

Table 6.1 gives the corresponding numerical data. Table 6.2 shows the cache performance 

for the systems. The high-level results are that, with or without hints, Davidson benefits 

significantly from the extra bandwidth of a second disk and becomes CPU-bound on 
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Figure 6.2. Davidson performance. This figure shows the performance of the Davidson computational- 
physics benchmark which repeatedly reads a large file sequentially on a range of disk array sizes. On the left, 
(a) shows elapsed time broken into CPU time and I/O stall time for four configurations. Digital UNIX is an 
unhinting Davidson running on the unmodified system. TIP, no hints is an unhinting Davidson running on 
TIP. TIP, no caching is Davidson giving hints which are used only for informed prefetching and not 
informed caching. Finally, TIP uses Davidson's hints for both prefetching and caching. Digital UNIX's 
aggressive readahead performs about the same as informed prefetching alone (TIP, no caching) for this 
access pattern. With informed caching, TIP reduces elapsed time by more than 30% on one disk by avoiding 
high-latency disk accesses. On more disks, prefetching masks disk latency, but informed caching still 
reduces elapsed time more than 10% by avoiding the overhead of going to disk. On the right, (b) shows I/O 
stall time as a function of prefetch depth for the TIP, no caching configuration. A prefetch depth of P is 
more than adequate to obtain the full benefit of informed prefetching for these TIP, no caching runs. 

larger arrays. Because the hints only disclose sequential access in one large file, Digital 

UNIX's aggressive readahead is nearly as effective as informed prefetching alone as seen 

by comparing TIP, no hints and no caching performance. Informed caching, however, 

increases the cache hit ratio which reduces the number of disk accesses. When the I/O 

bandwidth of a single disk limits performance, fewer accesses translates into fewer stalls 

and faster elapsed time. 

The first two bars in each quartet in the figure show that the performance of TIP with- 

out hints is similar to that of the unmodified Digital UNIX kernel over the full range of 

array sizes. Nevertheless, there are minor differences. In particular, the TIP system stalls a 

little less than the standard system but consumes a little more CPU time. The reduced 

stalls are the result of TIP's better paging performance due to the LRU annex which was 

described in Section 5.3.3. From Table 6.2, which gives the prefetching and caching per- 
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system 
1 disk 2 disks 3 disks 4 disks 10 disks 

CPU stall CPU stall CPU stall CPU stall CPU stall 

Digital UNIX 
110.03 

(0.66) 

182.07 

(0.65) 

113.22 

(0.41) 

45.75 

(0.42) 

116.11 

(0.35) 

18.29 

(0.35) 

115.76 

(0.16) 

19.41 

(0.17) 

115.49 

(0.23) 

20.88 

(0.32) 

TIP, no hints 
116.95 

(1.23) 

165.01 

(1.19) 

120.11 

(0.41) 

30.46 

(0.39) 

120.53 

(1.84) 

11.46 

(0.73) 

119.84 

(0.73) 

10.86 

(0.40) 

125.63 

(11.3) 

12.23 

(1.09) 

TIP, no caching 
118.75 

(7.03) 

160.06 

(6.98) 

127.92 

(6.89) 

20.05 

(3.76) 

122.41 

(1.23) 

5.45 

(0.29) 

121.91 

(1.49) 

3.48 

(0.11) 

121.41 

(0.58) 

2.95 

(0.17) 

TIP 
110.14 

(1.34) 

68.43 

(1.61) 

111.46 

(1.40) 

10.32 

(1.87) 

111.59 

(0.43) 

3.94 

(0.13) 

112.57 

(0.87) 

2.88 

(0.13) 

112.28 

(1.29) 

2.29 

(0.09) 

Table 6.1. Davidson elapsed time. This table presents the CPU and I/O stall times in seconds that are 
graphed in Figure 6.2. They are averages over five runs. The numbers in parentheses give the 95% 
confidence intervals. 

system 
(1 disk) 

requests prefetches cache 

total faults blocks l/Os reuse 
hits 

prefetch 
hits 

misses 
miss 
l/Os 

Digital UNIX 
153149 

(0) 

7248 

(0) 

126592 

(6) 

16597 

(1) 

25780 

(0) 

126039 

(6) 

1329 

(6) 

630 

(3) 

TIP, no hints 
147041 

(0) 

1140 

(0) 

124879 

(6) 

15980 

(1) 

21381 

(0) 

124847 

(6) 

812 

(6) 

195 

(3) 

TIP, no caching 
147042 

(0) 

1140 

(0) 

125676 

(0) 

15874 

(0) 

21373 

(0) 

125569 

(0) 

100 

(0) 

77 

(0) 

TIP 
147042 

(1) 

1140 

(0) 

50845 

(1072) 

8937 

(328) 

96159 

(1082) 

50782 

(1082) 

100 

(0) 

77 

(0) 

Table 6.2. Davidson prefetching and caching performance. This table shows the number of requests for 
file blocks made of the buffer cache, the prefetching aimed at maximizing cache hits, and how well the 
combination of caching and prefetching did at servicing the requests. The numbers in parentheses are the 
95% confidence interval for the measurements. Requests for empty buffers, e.g. for writes, are not included. 
Faults are blocks requested in response to a fault on a mapped block and are included in the total column. 
Most faults are for shared library text pages. Prefetches includes heuristic readahead and informed 
prefetching where applicable. Because the system clusters requests for multiple blocks into a single disk I/O 
access, the number of prefetch and miss l/Os is smaller than the number of blocks requested. Cache 
performance is broken into three categories. Reuse hits are scored when a block services a second or 
subsequent request. Prefetch hits are requests that hit in the cache only because the requested block was 
prefetched. The difference between the number of blocks prefetched and the number of prefetch hits is the 
number of blocks that were prefetched, but never accessed. Finally, the number of misses is the number of 
blocks requested that weren't in the cache. Disk reads for these blocks are clustered into miss l/Os accesses. 
For Davidson's sequential accesses, prefetching is effective even without hints, but hint-based informed 
caching increases the number of reuse hits by a factor of 4.5. See the text for details. 

formance for Davidson, the annex eliminates about 6100 page faults and reduces by about 

2200 the number of blocks read from disk. Without the annex, the sequential read of the 

large matrix file runs the mapped pages through the LRU queue which causes many to be 

unmapped and some to be flushed from the cache. 
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The higher CPU time for TIP with no hints compared to DU is primarily a result of the 

overhead of estimating on an ongoing basis the cache hit rate profile of the LRU queue. 

Giving hints to TIP adds some overhead for managing the hints. But, when TIP can use 

the hints for informed caching to reduce the number of disk accesses, the reduction in the 

CPU overhead of performing disk accesses more than offsets the CPU overhead of the TIP 

system. I examine the CPU overhead of TIP in more detail in Section 6.6.2. 

In the absence of hints, the TIP system uses DU's aggressive readahead policy for 

heuristic prefetching. By comparing the second and third bars in the figure, we can see 

that such readahead is nearly as effective as informed prefetching for this sequential work- 

load. 

For a closer look at I/O stall time as a function of prefetch depth on the TIP system 

with different array sizes, consider Figure 6.2b which presents stall time as a function of 

prefetch depth when TIP is configured to prefetch a fixed depth or number of accesses in 

advance. In this configuration, when TIP initiates a prefetch, it tries to cluster other hinted 

blocks up to a depth of 16 accesses beyond the prefetch horizon. It clusters beyond the 

prefetch horizon so that at a prefetch depth of 1, for example, the system still clusters the 

sequential accesses that DU would. The TIP, no caching bars in Figure 6.2a correspond to 

a prefetch depth of P =73 in part (b) of the figure. At a prefetch depth of 0 there is neither 

heuristic nor informed prefetching, although when a block is missed and read in, its neigh- 

bors on the disk are read in as a cluster. 

On a single disk, sequential readahead, no prefetching, and informed prefetching all 

perform equally well for Davidson's sequential accesses because there is sequential reada- 

head within the disk drive; the drive continues reading sequentially on the surface of the 

disk after servicing a read request. The drive knows nothing of file structure, but as long as 

the file is laid out sequentially and read sequentially as it is in this case, the drive's reada- 

head heuristic successfully anticipates the next request. On the single disk, the bandwidth 

off the media is the ultimate performance bottleneck. For sequentially laid-out and read 

data, the drive's readahead is sufficient to fully utilize the bandwidth of the drive and no 

file-system prefetching can further improve performance. 

On two disks, the second drives' readahead further reduces stall only a little as the 

latency of initiating an access and transferring the data from the disk to the buffer cache 
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starts to dominate performance in the absence of prefetching. In contrast, both sequential 

readahead and deep informed prefetching expose enough I/O concurrency to keep both 

drives busy, overlap the data transfer from one disk with computation on data read from 

the other and eliminate most of the I/O stall time. The bandwidth of two disks is nearly 

enough to keep up with Davidson. 

On three or more disks, there is ample I/O bandwidth to keep the CPU busy. As long 

as the prefetch depth is deep enough to take advantage of array parallelism, it is possible 

to virtually eliminate I/O stalls. 

Even though the model developed for stall as a function of prefetch depth in Chapter 4 

does not include complexities such as clustering, the sequentiality of the I/O workload, or 

even array size, the basic notion of the prefetch horizon still holds for the prefetch-only 

experiments shown in Figure 6.2b. P was intended to be an upper-bound on the depth of 

prefetching needed to eliminate stall on a large array. For Davidson, which has non-zero 

application CPU time, Tapp, and performs sequential accesses which complete in much 

less time than random accesses (Tdisk < 15 msec), prefetching to a depth of 16 on three or 

more disks is enough to virtually eliminate stall. Smaller arrays don't have enough band- 

width to eliminate stall. Nevertheless, on these smaller arrays, stall reaches a minimum 

within the prefetch horizon. As we will see, this same observation holds to varying 

degrees for all of the benchmarks; P serves as an upper bound on the prefetch depth 

needed to minimize stall for all array sizes. However, recent work has shown that, in the 

presence of caching, there is benefit in taking advantage of disk idleness that may occur 

when accessing cached data for deeper prefetching. In Chapter 7,1 will explore why P is a 

reasonable upper bound for all array sizes and discuss in more depth the relationship of 

these findings to the recent work on exploiting disk idleness. 

As Table 6.2 shows, none of the systems without informed caching uses the 12 

MBytes of cache buffers well. Because the 16.3 MByte matrix does not fit in the cache, 

the LRU replacement algorithm ejects all of the blocks before any of them are reused. 

Indeed, 18,780 of the 21,000 reuse hits that the LRU queue scores result from Davidson's 

non-block-aligned accesses; Davidson often ends a read in the middle of a file block, and 

scores a reuse hit when it reads the rest of the block with the next read system call. Most of 

the remaining reuse hits result from page faults serviced from the cache. (Digital UNIX's 



132 CHAPTER 6 

350 

x—* TIP, no hints 
o-o TIP 

4    6    8   10  12  14  16  18 20 22 
cache size (MBytes) 

Figure 6.3. Davidson performance vs. cache size. This graph shows the elapsed time for the Davidson 
benchmark as a function of cache size on a single disk. Informed caching in TIP discovers an MRU-like 
policy which uses additional buffers to increase cache hits and reduce elapsed time. In contrast, LRU 
caching in TIP, no hints derives no benefit from additional buffers until there are enough of them to cache 
both the entire dataset and needed shared libraries which also occupy cache buffers. Informed caching's 
advantage leads, in the most dramatic case, to a 54% reduction in elapsed time with a 17-MByte cache. 

higher reuse count results from its greater number of page faults.) Overall, these systems 

would do no worse if instead of hundreds of blocks from the large matrix, they only 

cached the single most recently used block. 

With informed caching turned on, TIP effectively uses the cache buffers to score 

nearly 75,000 additional reuse hits in the large matrix which reduces the number of blocks 

fetched from disk by an equivalent number. On one disk, this reduces elapsed time by 

36% compared to informed prefetching alone. When disk bandwidth is inadequate, 

improved caching avoids disk latency. Figure 6.3 shows Davidson's elapsed time with one 

disk on TIP with and without informed caching as a function of cache size. With standard 

LRU caching, extra buffers are of no use until the entire dataset fits in the cache. In con- 

trast, informed caching with TIP's min-max global valuation of blocks yields the smooth 

exploitation of additional cache buffers that is expected from an MRU replacement policy. 

On more disks, prefetching masks disk latency, but informed caching still reduces 

elapsed time an additional 8% by avoiding the CPU overhead of extra disk accesses. The 

prefetch horizon limits the use of buffers for prefetching and so avoids a pitfall of more 

aggressive prefetching strategies which may use excess I/O bandwidth to prefetch too 
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deeply and flush all cached blocks [Kimbrel96]. TIP effectively balances the allocation of 

cache buffers between prefetching and caching. 

In general, the benefit of informed caching is sensitive to the spacial locality of an 

application's I/O workload and how well conventional caching is working. If the cache is 

small relative to the number of distinct blocks that are repeatedly accessed, as it is towards 

the left in Figure 6.3, then not even optimal caching can reduce elapsed time by more than 

a small percentage. On the other hand, if the cache is large enough to hold all accessed 

blocks, then all block reuses are cache hits regardless of caching policy. This is the case 

towards the right in the figure. However, great gains are possible when the cache is large 

enough to hold a substantial portion of the blocks reused, but conventional caching tech- 

niques are failing to deliver cache hits. 

6.3.2 XDataSIice 

XDataSlice (XDS) is an interactive scientific visualization tool that allows scientists to 

view arbitrary slices through a 3-D dataset. The XDS benchmark simulates this behavior 

by rendering a sequence of 25 random slices from a dataset consisting of 5123 32-bit float- 

ing point values and requiring 512 MBytes of disk storage. Figures 6.4 and 6.5 show the 

benchmark's access pattern which is a series of short sequential segments separated by 

some stride. The length of the sequential segments is roughly proportional to the projec- 

tion of the slice being rendered onto the z-axis, the axis along which blocks are stored 

sequentially. Neither the sequences nor the strides are completely regular because of edge 

effects and discretization as arbitrary slice orientations are mapped to integer-sized data 

blocks. 

Figure 6.6a shows the average elapsed time on the usual four configurations plus TIP, 

no prefetching which has hints but does not use them for informed prefetching, disables 

DU's heuristic readahead for the hinted data, and does not read hinted blocks in clusters. 

Thus, TIP, no prefetching represents performance when almost every access is a miss. 

Table 6.3 gives the corresponding raw numbers. As was the case with Davidson, Digital 

UMX and TIP without hints have comparable performance with the exception of a small 

difference in faults revealed by the prefetching and caching numbers in Table 6.4. 
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Figure 6.4. XDataSlice access pattern. This graph shows which blocks XDS accessed at different times 
during the benchmark. XDS reads blocks needed to render a slice in ascending order. Thus, each of the 25 
slices fetched produces one monotonically increasing sequence of accesses in this graph. XDS delivers hints 
for one slice at a time. All of the access patterns may be loosely described as strided. But, not only do the 
strides vary from slice to slice, they vary within a single slice. In fact, this graph is misleadingly simple 
because the y-axis represents about 10,000 blocks per inch which is more than printers or the human eye can 
resolve. Most of the access which appear to be sequential in this graph are actually strided. To show this, 
Figure 6.5 graphs the region from y= 26,000 - 30,000 which is demarcated by the horizontal lines in this 
figure. 
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Figure 6.5. Close-up of XDataSlice's accesses to a small range of its dataset. This graph expands the 
region between the horizontal lines in Figure 6.4. It shows that accesses that appeared to be sequential in that 
figure are, in fact, themselves strided. In this graph, some of the accesses which appear to be single blocks, 
are in fact short sequential runs. For example, most of the dots near ;t=2.7 seconds represent reads of three 
sequential blocks which is enough to trigger DU's sequential readahead heuristic. Although strided, XDS' 
access pattern is complex. It would be a challenge to develop a heuristic algorithm that could quickly lock on 
to its pattern and prefetch deeply with high accuracy. 

Although sequential readahead worked well for Davidson, it fails miserably for XDS's 

short sequential reads. First, it does not provide the concurrency needed to take advantage 

of disk array parallelism so, without hints, XDS performs little better on 10 disks than it 

does on 1. Indeed, when bandwidth is scarce on one disk, Digital UNIX's readahead actu- 

ally hurts rather than helps XDataSlice as shown by the performance of TIP, no prefetch- 

ing. From Table 6.4, of the roughly 60,000 blocks prefetched by the sequential readahead 

heuristic for the first two configurations, only about 25,000 ever become prefetch hits. 

Overall, Digital UNIX reads 1.7 times as many blocks from disk as are accessed. On a sin- 

gle disk, readahead increases elapsed time by about 50 seconds or 18%. On ten disks, 

there is bandwidth to spare, so the useless readaheads are less likely to delay a read for 

needed data and the 25,000 good readaheads have a chance to improve performance. The 
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Figure 6.6. XDataSlice performance. Graph (a) shows the elapsed time for rendering 25 random slices 
through a 512 MByte dataset. In TIP, no prefetching, TIP is not prefetching or using DU's heuristic 
readahead for the hinted data. Without TIP's informed prefetching, the system makes poor use of the disk 
array because it doesn't know what to prefetch. In fact, DU's heuristic readahead prefetches so many unused 
blocks that it hurts performance on one disk. But, informed by hints, TIP is able to prefetch in parallel, mask 
the latency of the many seeks, and reduce overall elapsed time by 82%. There is very little data reuse, so 
informed caching does not further decrease elapsed time. Graph (b) shows stall as a function of prefetch 
depth for the TIP, no caching case. For this application which performs many seeks and has little 
computation between reads, there is benefit in prefetching out to the prefetch horizon, but little beyond that. 
An unbalanced load (see Figure 6.7) on four disk causes the stall on four disks to exceed the stall on three 
disks at prefetching depths less than about 32. 

net result is that sequential readahead on ten disks reduces elapsed time by about 20 sec- 

onds. The cross-over point is at three disks. 

With hints, informed prefetching knows what to prefetch. Thus, TIP can prefetch 

aggressively in parallel and exploit the bandwidth of the disk array. On ten disks, the 

result is a 93% reduction in I/O stall time which leads to an 82% reduction in elapsed time. 

Because informed prefetching does not waste I/Os, the TIP system does not have to pay 

the CPU overhead, Tdriver, of performing Digital UNIX's useless readaheads. Thus, 

informed prefetching reduces CPU time as well as I/O stall time. 

Figure 6.6b shows the effect of informed prefetching on stall time as a function of 

prefetch depth. The curves reveal a number of interesting peculiarities in XDataSlice's 

performance. First, at a prefetch depth of 0, stall is greater on two or more disks than on 
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system 
1 disk 2 disks 3 disks 4 disks 10 disks 

CPU stall CPU stall CPU stall CPU stall CPU stall 

Digital UNIX 
38.66 

(0.11) 

289.71 

(1.05) 

38.96 

(0.36) 

281.16 

(0.77) 

38.65 

(0.07) 

263.43 

(2.08) 

38.91 

(0.29) 

269.07 

(1.18) 

38.87 

(0.05) 

249.61 

(1.07) 

TIP, no hints 
39.95 

(0.21) 

285.61 

(0.57) 

39.94 

(0.14) 

275.53 

(0.69) 

40.27 

(0.32) 

256.52 

(1.47) 

39.87 

(0.08) 

263.46 

(0.44) 

40.01 

(0.28) 

244.57 

(0.82) 

TIP, no prefetch 
39.68 

(0.29) 

234.62 

(0.42) 

39.77 

(0.59) 

262.18 

(1.28) 

39.46 

(0.23) 

266.63 

(2.43) 

39.50 

(0.27) 

263.01 

(0.76) 

39.90 

(0.57) 

263.09 

(1.44) 

TIP, no caching 
32.39 

(0.12) 

207.26 

(0.20) 

32.01 

(0.08) 

116.70 

(1.51) 

32.04 

(0.09) 

72.07 

(0.19) 

32.31 

(0.20) 

59.25 

(0.17) 

33.44 

(0.15) 

18.27 

(0.41) 

TIP 
32.93 

(0.18) 

206.13 

(0.13) 

32.44 

(0.11) 

115.07 

(0.44) 

32.59 

(0.17) 

71.22 

(0.33) 

32.63 

(0.33) 

58.57 

(0.62) 

33.82 

(0.13) 

17.33 

(0.12) 

Table 6.3. XDataSlice elapsed time. This table presents the raw numbers graphically portrayed in Figure 
6.6. Units are seconds and the numbers in parentheses are the 95% confidence intervals. 

system 
(1 disk) 

requests prefetches cache 

total faults blocks l/Os 
reuse 
hits 

prefetch 
hits 

misses 
miss 
I/Os 

Digital UNIX 
55194 

(41) 

8829 

(31) 

62011 

(4) 

23171 

(2) 

7808 

(31) 

26480 

(2) 

20905 

(10) 

20593 

0) 

TIP, no hints 
48166 

(14) 

1799 

(0) 

60710 

(3) 

22681 

(2) 

2641 

(4) 

25381 

(1) 

20144 

(9) 

20101 

(9) 

TIP, no prefetch 
48160 

(0) 

1799 

(0) 

179 

(1) 

65 

(1) 

2669 

(0) 

169 

(1) 

45321 

(1) 

45279 

(1) 

TIP, no caching 
48160 

(0) 

1799 

(0) 

45328 

(1) 

14871 

(1) 

2662 

(0) 

45318 

(1) 

179 

(1) 

137 

(1) 

TIP 
48160 

(0) 

1799 

(0) 

45307 

(1) 

14863 

(0) 

2688 

(1) 

45297 

(1) 

174 

(0) 

132 

(0) 

Table 6.4. XDataSlice prefetching and caching performance. Aggressive sequential readahead in Digital 
UNIX and TIP without hints works poorly for this workload of many short sequential runs. Of over 60,000 
prefetches, only about 25,000 ever become prefetch hits. Informed prefetching knows what not to prefetch 
as well as what to prefetch and so can prefetch aggressively and accurately. There is very little reuse in this 
workload, so informed caching does not significantly increase reuse hits. 

one. This is because the typical sequential run is four or five blocks. On one disk, XDS 

seeks once to the start of the run and then does efficient sequential accesses for the rest of 

the run. On two or more disks, however, a single sequential run often spills over into the 

next stripe unit so that the application incurs the latency of two seeks instead of one. As 

the prefetching depth increases, this second seek is overlapped with one or more other 

seeks and its impact is eventually offset by the larger array's higher transfer bandwidth 

and ability to fetch multiple sequential runs simultaneously. 
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Figure 6.7. XDataSlice disk load distribution for a range of accesses on a four-disk array. This figure 
shows how activity is distributed across the disks in a four-disk array for a range of 3000 of XDS' total of 
about 50,000 accesses. Some slices and therefore sequences of accesses are reasonably well-balanced, but 
some, such as this one, are highly unbalanced. For example, all of the accesses from about 11,600 to 12,700 
go to only two disks and most only go one disk. For this period of over 1000 accesses, disks 0 and 1 sit idle. 

Another interesting result is that the I/O stall time on 4 disks is greater than on 3 disks 

up to a prefetch depth of about 32. Because the dataset dimensions, the block size, and the 

stripe unit are all powers of 2, some slices have a pathologically unbalanced workload on 

a 4-disk array as shown in Figure 6.7. The situation is analogous to the contention one can 

find in the interleaved memory of a supercomputer. Using a prime number of disks in the 

array, or randomizing the assignment of stripe units to disks could probably help alleviate 

the problem. The effect of the unbalanced load is that the full parallelism of the array is 

not always available and performance suffers. Prefetching deeply can smooth over these 

transient load imbalances which is why the performance of the four-disk array eventually 

caches up to and surpasses that of the three-disk array. Ideally, prefetching would be sen- 

sitive to load imbalances and be deeper when beneficial. This observation has led to work 

developing such adaptability [Kimbrel95, Kimbrel96a, Kimbrel96, Tomkins97]. I will 

discuss the relationship of that work to the approach described here in Chapter 7. But, 

such adaptability is beyond the scope of this dissertation which is Hrnited to an investiga- 

tion of prefetching and caching algorithms that do not rely on specific information about 

data layout. 

Even with the unbalanced load, the prefetch horizon of P=13 captures most of the 

potential stall reduction, as shown in Figure 6.6b, and stall decreases very little beyond P 

for any array size. At the same time, the prefetch horizon successfully captures the knee in 
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the curve for 4 and 10 disks; there is benefit in prefetching out to the prefetch horizon. 

Davidson performs a significant amount of computation between sequential reads and 

therefore, in the absence of caching, does not benefit from increasing the prefetch depth 

beyond 16. But, XDS does little computation between reads (Tapp is small), and its reads 

often require seeks to new locations (Tdisk is large), so its application-specific prefetch 

horizon is close to the system-wide upper bound, P. 

Because XDataSlice is reading thin slices from a very large dataset, there is very little 

reuse in its workload. Consequently, there is little opportunity for informed caching to 

avoid I/O accesses. For similar reasons informed clustering does not play a substantial 

role. Standard clustering of sequential reads is important, but because hints are given for 

one slice at a time, and because accesses within a slice are in ascending order, there is little 

opportunity for informed clustering to combine multiple, widely-separated accesses into a 

single larger one. 

XDataSlice originally required all data to be memory-resident to render slices interac- 

tively. These results show that with informed prefetching and a disk array, this application 

can run out-of-core and still render a slice from a very large dataset in about two seconds. 

Informed prefetching doesn't just improve performance; for XDataSlice, it is an enabling 

technology that provides important new out-of-core capability. 

6.3.3 Sphinx 

Sphinx is a high-quality, speaker-independent, continuous-voice, speech-recognition 

system. In our experiments, Sphinx is recognizing an 18-second recording commonly 

used in Sphinx regression testing. Figure 6.8 shows its access pattern which includes an 

initialization scan of its language models followed by a recognition phase during which it 

dynamically loads needed language data. Roughly 65,000 of Sphinx's 78,000 block reads 

occur during the initialization phase. Figure 6.9 shows the elapsed time for the bench- 

mark, Table 6.5 gives the corresponding elapsed-time numbers, and Table 6.6 shows 

caching and prefetching performance. 

Digital UNIX's sequential readahead and a two-disk array help Sphinx during its ini- 

tialization scan even though the skips lead to some false readahead. But, with informed 

prefetching, it takes advantage of the array even for the many small accesses during the 
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Figure 6.8. Sphinx access pattern. During the first 53 seconds, Sphinx initializes itself by scanning its 
language models and dictionaries to build internal tables. One language-model file accounts for all the 
blocks from 493-23,016 in the graph. The scans are in ascending order, but there are skips which decrease in 
size until, from global offset 13768, the skips are smaller than a block so all blocks are accessed. After this 
initialization phase, Sphinx dynamically hints and loads pieces of the language model as needed during the 
recognition phase. The file holding the digitized speech being recognized only occupies 8 blocks and so is 
not visible on the graph. 



TIP PERFORMANCE EVALUATION 141 

■ Digital UNIX 
■TIP, no hints 
■TIP, no caching 
■ TIP 

-o 1 disks 
-H 2 disks 

12       3       4 
number of disks 

(a) total elapsed time 

P 100 200 
prefetch depth 

(b) I/O stall time vs. prefetch depth 

Figure 6.9. Sphinx performance. As (a) shows, without hints Sphinx derives only a small benefit from the 
disk array. With hints, TIP's informed prefetch takes advantage of the array for the random loads of pieces of 
the language model. Informed caching does not help because Sphinx gives mostly small bursts of hints and 
has poor access locality. Figure (b) shows the familiar relationship between stall time and prefetch depth. In 
this case, however, the advantage of deeper prefetching on a single disk is not better disk scheduling, but 
increased resilience to Sphinx's bursty I/O accesses. 

recognition phase that dynamically load the needed parts of the language model. These 

small reads also lead to some false readahead, although to a much smaller extent than for 

XDataSlice. On just three disks, informed prefetching reduces I/O stall time by 69% 

which translates into a 21% reduction in elapsed time for this compute-intensive applica- 

tion. 

Referring to Figure 6.9b, we see the familiar curve of stall time vs. prefetch depth. In 

this case, however, the results on one disk point to an interesting new phenomenon. Nor- 

mally, when the stall time drops off on one disk, the expectation is that it is due to disk 

scheduling advantages of queuing multiple requests. In this case, however, virtually all of 

the hints during the initialization phase and over 85% of the hints during the recognition 

phase are given in ascending order of block address so there is little opportunity for disk 

scheduling to reduce access time. Instead, the greater prefetch depth is providing resil- 

iency to Sphinx's bursty I/O workload. Sphinx often pauses to compute for ten or more 

milliseconds in the middle of a hinted burst of reads. By prefetching more deeply, TIP can 

take advantage of the computation-induced lulls in I/O activity, to get ahead of Sphinx's 
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system 
1 disk 2 disks 3 disks 4 disks 10 disks 

CPU stall CPU stall CPU stall CPU stall CPU stall 

Digital UNIX 
145.88 

(0.67) 

99.29 

(0.37) 

146.31 

(0.85) 

72.73 

(0.32) 

146.16 

(0.80) 

68.55 

(0.42) 

145.94 

(0.15) 

67.17 

(0.38) 

146.29 

(0.81) 

64.98 

(0.37) 

TIP, no hints 
148.89 

(0.65) 

98.15 

(0.25) 

149.34 

(0.51) 

72.49 

(1.10) 

149.02 

(0.62) 

68.34 

(0.46) 

149.18 

(0.49) 

67.37 

(0.44) 

149.49 

(0.80) 

65.08 

(0.42) 

TIP, no caching 
152.87 

(0.53) 

76.15 

(0.26) 

153.10 

(0.80) 

32.01 

(0.48) 

150.77 

(0.92) 

21.31 

(0.36) 

153.19 

(0.81) 

18.55 

(0.45) 

150.81 

(0.34) 

14.93 

(0.85) 

TIP 
152.26 

(0.52) 

76.36 

(0.65) 

152.13 

(0.85) 

31.55 

(0.40) 

153.02 

(0.50) 

20.94 

(0.30) 

152.09 

(0.67) 

18.14 

(0.24) 

152.56 

(1.28) 

14.20 

(0.15) 

Table 6.5. Sphinx elapsed time. These are the data graphed in Figure 6.9a. The numbers in parentheses are 
the 95% confidence intervals for the averages of the five runs. 

system 
(1 disk) 

requests prefetches cache 

total faults blocks l/Os reuse 
hits 

prefetch 
hits misses miss 

l/Os 

Digital UNIX 
78879 

(111) 

1142 

(113) 

21135 

(38) 

4356 

(12) 

51125 

(40) 

17822 

(22) 

9930 

(80) 

4570 

(24) 

TIP, no hints 
78665 

(4) 

929 

(0) 

21103 

(19) 

4343 

(7) 

50909 

(49) 

17808 

(10) 

9947 

(47) 

4554 

(14) 

TIP, no caching 
78393 

(0) 

890 

(0) 

26849 

(14) 

7731 

(4) 

51307 

(14) 

26730 

(14) 

355 

(3) 

288 

(3) 

TIP 
78363 

(9) 

860 

(9) 

26764 

(92) 

6487 

(21) 

51368 

(97) 

26648 

(93) 

346 

(0) 

279 

(0) 

Table 6.6. Sphinx prefetching and caching performance. These data show that informed prefetching 
achieves almost 50% more prefetch hits with only 26% more prefetches than sequential readahead because it 
can prefetch accurately. Although there is substantial buffer reuse by Sphinx, LRU queue profiling reveals 
that virtually all of these reuse hits occur in the most recently used segment of the LRU queue and that there 
is little opportunity for informed caching to improve performance. 

data requests. Because these lulls are short, a prefetch depth of only 16 is sufficient to take 

full advantage of them. 

For a number of reasons, informed caching does not help Sphinx. Although there are a 

good number of reuse hits, as shown in Table 6.6, most of these are a result of multiple 

partial-block reads that hit in the first segment of the LRU queue. Sphinx's internal cache 

and large datasets lead to little locality in its file accesses beyond this. Furthermore, 

Sphinx's small bursts of hints do not give TIP sufficient advance knowledge to signifi- 

cantly improve cache performance. In general, informed caching requires hints much fur- 

ther in advance than does informed prefetching. 
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Figure 6.10. Agrep access pattern. In the benchmark, Agrep searches 1349 files sequentially. This results 
in the trivial access pattern shown here. But, because the single linear global block addresses used for the y- 
axis map to so many separate files, the file system does not observe the accesses as one single sequential 
read, but as many short, disjoint sequential reads for which sequential readahead is not too useful. Agrep's 
hints disclose the larger pattern and enable TIP to prefetch across files and not just within individual files. 
During the delay in starting the search, Agrep is checking each of its arguments to make sure they are valid 
file names. As it does so, it discloses the eventual sequential read of the file in a hint. 

6.3.4 Agrep 

In this benchmark, Agrep searches 1349 kernel source files occupying 2922 disk 

blocks for a simple string that does not occur in any of the files. Figure 6.10 shows the 

misleadingly simple global access pattern; misleading because the single large sequential 

access is actually a concatenation of sequential accesses to the many files. Over 80% of 

these files have only one or two blocks and are therefore too small for any sequential 

readahead. Over 94% consist of five blocks or less. Only four of the 1349 files are larger 

than 20 blocks and the largest has 38. The average number is 2.17 blocks. 

Figure 6.11 shows the elapsed and stall times for this search and Table 6.7 gives the 

numbers for part (a) of the figure. As was the case for both XDataSlice and Sphinx, with- 

out informed prefetching there is little parallelism in Agrep's I/O workload. Even though 

the files are searched sequentially, because most are small, even aggressive sequential 

readahead successfully prefetches only about a third of the blocks (see Table 6.8) and does 

not achieve parallel transfer. However, Agrep's disclosure of future accesses exposes 

potential I/O concurrency not within individual files, but across multiple files. Arrays of 

as few as four disks reduce elapsed time by 72% and of ten disks reduced elapsed time by 

84%. 
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Figure 6.11. Agrep performance. This figure shows the elapsed time (a) and stall time (b) for searches 
through 1349 files in three directories. Most of the files are not large enough for sequential readahead to 
expose concurrency and take advantage of the disk array. Disclosure exposes concurrency across files that 
informed prefetching uses to reduce elapsed time by up to 84%. Because there is no data reuse by this 
application, there is no opportunity for informed caching. 

In this benchmark, all the files are read only once, so there is no data reuse and there- 

for no opportunity for informed caching benefits. 

6.3.5 Gnuld 

The Gnuld benchmark links the 562 object files of a TIP kernel. These object files 

comprise approximately 64 MBytes, and produce an 8.8-MByte kernel. Figure 6.12 shows 

the access pattern for the benchmark. Figure 6.13 presents the elapsed and I/O stall times 

for this test and Table 6.9 gives the numerical data for the elapsed time. 

Gnuld is another example of a serial I/O workload that is unable to take advantage of 

disk-array parallelism as is seen from the flat performance across array sizes for both the 

Digital UNIX and TIP, no hints runs. For most of its accesses, Gnuld is looping over the 

object files reading small segments from each. As was the case for XDataSlice, sequential 

readahead actually hurts performance for this workload. As Table 6.10 shows, false reada- 

head leads to the wasted prefetching of over 1100 blocks. But, here, there is an additional 

penalty of false readahead: more cache misses. Comparing the reuse hits for Tip, no hints 
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system 
1 disk 2 disks 3 disks 4 disks 10 disks 

CPU stall CPU stall CPU stall CPU stall CPU stall 

Digital UNIX 
2.27 

(0.03) 

24.72 

(0.30) 

2.30 

(0.11) 

23.37 

(0.73) 

2.22 

(0.03) 

23.35 

(0.96) 

2.22 

(0.03) 

23.19 

(0.70) 

2.23 

(0.04) 

24.08 

(0.88) 

TIP, no hints 
2.36 

(0.02) 

24.40 

(0.34) 

2.30 

(0.05) 

23.10 

(0.84) 

2.34 

(0.03) 

23.01 

(0.68) 

2.37 

(0.15) 

22.87 

(0.59) 

2.38 

(0.04) 

23.41 

(0.66) 

TIP, no caching 
2.34 

(0.03) 

19.86 

(0.32) 

2.28 

(0.02) 

9.87 

(0.19) 

2.31 

(0.05) 

7.02 

(0.20) 

2.29 

(0.03) 

4.72 

(0.13) 

2.44 

(0.18) 

1.80 

(0.13) 

TIP 
2.40 

(0.03) 

19.81 

(0.45) 

2.30 

(0.02) 

10.07 

(0.20) 

2.35 

(0.02) 

6.92 

(0.25) 

2.33 

(0.05) 

4.66 

(0.12) 

2.43 

(0.01) 

1.69 

(0.02) 

Table 6.7. Agrep elapsed time. These are the data graphed in Figure 6.1 la. The numbers in parentheses are 
the 95% confidence intervals for the averages of the five runs. 

system 
(1 disk) 

requests prefetches cache 

total faults blocks l/Os 
reuse 
hits 

prefetch 
hits 

misses 
miss 
l/Os 

Digital UNIX 
3425 

(25) 

497 

(25) 

1077 

(367) 

613 

(261) 

407 

(19) 

1065 

(366) 

1953 

(358) 

1933 

(357) 

TIP, no hints 
3305 

(13) 

377 

(13) 

1050 

(358) 

598 

(256) 

335 

(14) 

1044 

(358) 

1925 

(357) 

1920 

(358) 

TIP, no caching 
3309 

(7) 

381 

(7) 

2949 

(1) 

1771 

(1) 

341 

(6) 

2945 

(1) 

23 

(3) 

13 

(1) 

TIP 
3307 

(11) 

379 

(11) 

2951 

(1) 

1771 

(0) 

337 

(11) 

2949 

(3) 

21 

(4) 

12 

(1) 

Table 6.8. Agrep prefetching and caching performance. Although Agrep searches the file sequentially, 
most of the files are short, so sequential readahead only prefetches about a third of the blocks. None of the 
blocks from the searched files are reused, so there is no opportunity for informed caching. 

and TIP, no prefetch, we see that the false readahead in no hints reduces the number of 

reuse hits by 330. Whereas false prefetches delay useful prefetches less on larger arrays, 

these cache misses incur the full latency of a disk access no matter what the array size is. 

Informed prefetching in TIP, no caching suffers from neither false prefetching nor a 

decrease in reuse hits. It takes advantage of a ten-disk array to eliminate 84% of the I/O 

stall time and reduce overall elapsed time by 74%. 

Informed caching in the TIP runs increases reuse hits by 600 compared to prefetching 

alone in TIP, no caching. Most of the avoided misses are for hinted data which in TIP, no 

caching are prefetched back. On a single disk there is insufficient bandwidth to prefetch 

all of the misses without stall and informed caching reduces elapsed time by 6%. 
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Figure 6.12. Gnuld access pattern. Gnuld makes many passes over the 562 object files it is linking to build 
a new kernel. It is only after it has read the headers and symbols from each file that it starts writing the new 
kernel, symbols at the end first and code at the beginning next. The blip at offsets 5620-5772 is the 152- 
block AFS file system library being loaded. The next largest object file is only 50 blocks in size. 
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Figure 6.13. Gnuld performance. This figure shows the elapsed time (a) and stall time (b) for Gnuld to link 
a Digital UNIX kernel. Informed prefetching again takes advantage of the disk array where readahead 
heuristics fail. TIP reduces elapsed time by up to 74%. 

6.3.6 Postgres 

The Postgres benchmarks are joins of two relations. The outer relation contains 20,000 

unindexed tuples (3.2 MBytes) whereas the inner relation has 200,000 tuples (32 MBytes) 

and is indexed (5 MBytes). In the first benchmark, 20% of the outer-relation tuples find a 

match in the inner relation. In the second, 80% find a match. One output tuple is written 

sequentially for every tuple match. Recall from Section 3.4.3, that in the original code, 

Postgres loops over the outer-relation tuples, interleaving sequential accesses to the outer 

relation with random accesses to the index and the inner relation. To generate hints, the 

loop is split and Postgres passes over the outer-relation tuples twice. During the first pass, 

Postgres performs all the index lookups. It then issues hints for the reads of the matching 

inner-relation tuples which it performs during the second pass over the outer-relation 

tuples. Figures 6.14 and 6.15 show the access pattern for the two benchmarks after the 

loop is split. Figure 6.16 and Tables 6.11 and 6.12 give the results for the 20%-match case 

and Figure 6.17 and Tables 6.13 and 6.14 give the results for the 80%-match case. 

Splitting the loop substantially reduces Postgres elapsed time even without giving 

hints. On a single disk, it reduces elapsed time by 25% and 35% for the 20%- and 80%- 
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system 
1 disk 2 disks 3 disks 4 disks 10 disks 

CPU stall CPU stall CPU stall CPU stall CPU stall 

Digital UNIX 
11.10 

(0.31) 

86.77 

(0.87) 

11.04 

(0.10) 

87.19 

(1.29) 

11.05 

(0.14) 

82.77 

(1.63) 

10.99 

(0.10) 

83.52 

(1.00) 

10.92 

(0.09) 

81.61 

(0.77) 

TIP, no hints 
11.35 

(0.14) 

87.04 

(0.71) 

11.41 

(0.11) 

87.79 

(1.86) 

11.46 

(0.22) 

83.00 

(2.91) 

11.43 

(0.12) 

84.19 

(1.77) 

11.39 

(0.08) 

82.29 

(1.18) 

TIP, no prefetch 
12.49 

(0.03) 

82.95 

(0.20) 

12.70 

(0.18) 

82.34 

(0.20) 

12.67 

(0.16) 

77.65 

(0.95) 

12.51 

(0.03) 

78.63 

(0.16) 

12.54 

(0.05) 

76.89 

(0.22) 

TIP, no caching 
11.08 

(0.08) 

68.56 

(0.28) 

11.03 

(0.06) 

38.60 

(0.22) 

11.04 

(0.05) 

27.37 

(0.41) 

11.09 

(0.06) 

22.77 

(0.31) 

11.32 

(0.05) 

13.32 

(0.23) 

TIP 
11.11 

(0.11) 

63.65 

(3.46) 

11.00 

(0.06) 

35.11 

(1.25) 

11.16 

(0.09) 

25.08 

(0.12) 

11.23 

(0.14) 

21.24 

(0.85) 

11.36 

(0.17) 

12.70 

(0.43) 

Table 6.9. Gnuld elapsed time. These are the data graphed in Figure 6.13a. The numbers in parentheses are 
the 95% confidence intervals for the averages of the five runs. 

system 
(1 disk) 

requests prefetches cache 

total faults blocks l/Os 
reuse 
hits 

prefetch 
hits 

misses 
miss 
l/Os 

Digital UNIX 
23734 

(48) 

1303 

(48) 

5816 

(621) 

2710 

(321) 

12056 

(45) 

4662 

(111) 

7016 

(97) 

5191 

(89) 

TIP, no hints 
23525 

(34) 

1094 

(34) 

5784 

(615) 

2689 

(319) 

11924 

(32) 

4631 

(109) 

6970 

(106) 

5174 

(101) 

TIP, no prefetch 
23538 

(44) 

1106 

(44) 

103 

(3) 

47 

(1) 

12252 

(43) 

82 

(4) 

11203 

(5) 

11164 

(4) 

TIP, no caching 
23541 

(44) 

1109 

(44) 

11027 

(3) 

4880 

(1) 

12247 

(43) 

11006 

(4) 

287 

(5) 

247 

(4) 

TIP 
23536 

(32) 

1104 

(32) 

10477 

(384) 

4431 

(304) 

12856 

(312) 

10402 

(321) 

277 

(8) 

239 

(3) 

Table 6.10. Gnuld prefetching and caching performance. Gnuld loops over the object files several times 
reading short segments from the files. This access pattern defeats sequential readahead and, in fact, leads to 
some false prefetching which displaces some useful blocks and decreases the number of reuse hits in TIP, no 
hints compared to TIP, no prefetch. Informed prefetching accurately prefetches more than twice as many 
blocks which exposes concurrency for the disk array and does not decrease reuse hits. Informed caching 
increases reuse hits by 600 which helps reduce stalls when bandwidth is limited by a small array. 

Restructuring the code increases the locality of the index accesses which are no longer 

interleaved with inner-relation tuple accesses. The increased locality increases cache 

effectiveness and therefore the number of reuse hits as a percentage of total requests from 

52% to 65% in the 20%-match case and from 47% to 63% in the 80%-match case. These 

caching gains dwarf the CPU penalty. 
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Figure 6.14. Postgres, 20% match, access pattern. On its first pass through the outer relation, Postgres 
tries to find a match for each record in the inner-relation index. It then discloses the blocks it will read in a 
hint. On the second pass, it performs 3976 hinted reads of matching records from the 4082-block inner 
relation. Before the loop-splitting, the accesses to the inner-relation index and data files were interleaved and 
the access locality was much lower. 
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Figure 6.15. Postgres, 80% match, access pattern. The general access pattern for the 80% match case is 
identical to that of the 20% match case, except that because more outer-relation records have matches in the 
inner relation, it performs 15,674 hinted reads of matching records from the inner relation. 

Postgres benefits little from Digital UNIX's sequential readahead. There are few 

sequential accesses apart from the 818 accesses to the outer relation. Thus, even though 

the 80%-match case has three times as many accesses as the 20%-match case, there are 

about the same number of prefetches in the two cases when Postgres does not give hints. 
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Figure 6.16. Postgres, 20% match, performance. In (a), the original runs show the performance before 
Postgres' loop is split to give hints. The split loop runs show the performance of the restructured Postgres 
running on the usual four configurations. The restructuring improves access locality and therefore cache 
performance, allowing it to run faster than the original Postgres even without hints. Informed prefetching 
further reduces I/O stall time. Graph (b) shows stall as a function of prefetch depth. On one disk, deep 
prefetching improves disk scheduling and reduces stall, but on ten disks, prefetching too deeply reduces 
cache effectiveness and increases stall. See text for details. 
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Figure 6.17. Postgres, 80% match, performance. Overall performance is very similar to the 20%-match 
case except that the larger number of matches leads to more random hinted reads of the matching inner 
relation tuples which lead to greater gains from informed prefetching. They also provide more opportunities 
for informed caching to reduce the number of blocks fetched from disk and for informed clustering to fetch 
adjacent blocks for widely separated accesses which improves access efficiency and reduces elapsed time by 
31%. 
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system 
1 disk 2 disks 3 disks 4 disks 10 disks 

CPU stall CPU stall CPU stall CPU stall CPU stall 

original: 
Digital UNIX 

24.50 

(0.16) 

101.45 

(0.48) 

26.24 

(3.13) 

96.78 

(2.40) 

24.41 

(0.24) 

89.55 

(1.24) 

24.30 

(0.36) 

86.57 

(0.56) 

24.13 

(0.38) 

77.45 

(0.24) 

split loop: 
Digital UNIX 

28.08 

(0.28) 

65.77 

(0.37) 

28.06 

(0.18) 

64.18 

(0.42) 

27.72 

(0.28) 

60.04 

(0.23) 

27.71 

(0.10) 

57.09 

(0.18) 

28.29 

(0.59) 

51.93 

(0.48) 

split loop: 
TIP, no hints 

28.35 

(0.41) 

69.00 

(0.53) 

28.70 

(0.72) 

65.37 

(0.64) 

28.50 

(0.37) 

61.69 

(0.44) 

28.45 

(0.14) 

58.56 

(0.96) 

28.03 

(0.36) 

53.84 

(0.41) 

split loop: 
TIP, no caching 

28.65 

(0.40) 

50.01 

(0.36) 

28.42 

(0.23) 

28.78 

(0.43) 

28.75 

(0.34) 

21.50 

(0.30) 

28.66 

(0.39) 

18.05 

(0.20) 

28.78 

(0.36) 

14.44 

(0.20) 

split loop: 
TIP 

28.60 

(0.50) 

46.72 

(0.46) 

28.40 

(0.26) 

27.08 

(0.53) 

28.60 

(0.68) 

20.38 

(0.49) 

28.58 

(0.36) 

17.06 

(0.34) 

28.34 

(0.22) 

13.37 

(0.28) 

Table 6.11. Postgres, 20% match, elapsed time. These are the data graphed in Figure 6.16a. The numbers 
in parentheses are the 95% confidence intervals for the averages of the five runs. 

system 
(1 disk) 

requests prefetches cache 

total faults blocks l/Os 
reuse 
hits 

prefetch 
hits 

misses miss 
l/Os 

original: 
Digital UNIX 

11125 

(47) 

2395 

(46) 

724 

(5) 

174 

(6) 

5201 

(49) 

523 

(6) 

5401 

(12) 

5313 

(13) 

split loop: 
Digital UNIX 

11254 

(34) 

2555 

(35) 

1121 

(13) 

233 

(2) 

6174 

(31) 

1039 

(5) 

4041 

(11) 

3961 

(10) 

split loop: 
TIP, no hints 

10851 

(24) 

2151 

(28) 

1070 

(16) 

224 

(4) 

5744 

(37) 

901 

(8) 

4204 

(13) 

4139 

(8) 

split loop: 
TIP, no caching 

10926 

(31) 

2096 

(31) 

4240 

(20) 

3340 

(12) 

5743 

(20) 

4074 

(12) 

1108 

(6) 

1042 

(5) 

split loop: 
TIP 

10787 

(20) 

2082 

(19) 

4107 

(17) 

3086 

(21) 

5787 

(17) 

3934 

(8) 

1065 

(4) 

1002 

(2) 

Table 6.12. Postgres, 20% match, prefetching and caching performance. Splitting the loop adds 1000 
reuse hits and decreases elapsed time even without hints. Informed caching and clustering reduce the 
number of prefetch l/Os by 250 which reduces stall by 7% on a single disk. 

Because sequential readahead does not work for Postgres, there is little concurrency in 

Postgres' I/O workload and, without hints, Postgres is unable to take full advantage of the 

disk array. Indeed, what little advantage Postgres does find in the larger arrays is a result 

not of the disks working in parallel, but of the data being spread over less of an individual 

disk's surface which lowers the per-block access time from 16 msec on one disk to 13 

msec on ten disk for the 80%-match case. We see again that disk arrays need parallel 

workloads to take advantage of the hardware parallelism they offer. 
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system 
1 disk 2 disks 3 disks 4 disks 10 disks 

CPU stall CPU stall CPU stall CPU stall CPU stall 

original: 
Digital UNIX 

46.49 

(0.49) 

345.32 

(2.27) 

46.59 

(0.60) 

334.89 

(1.63) 

46.47 

(0.49) 

309.63 

(1.56) 

46.25 

(1.06) 

294.57 

(1.01) 

47.39 

(4.68) 

269.09 

(3.81) 

split loop: 
Digital UNIX 

47.01 

(0.35) 

207.55 

(0.21) 

47.69 

(1.44) 

205.35 

(0.38) 

47.07 

(0.31) 

192.50 

(1.06) 

46.98 

(0.30) 

180.00 

(0.71) 

47.13 

(0.82) 

162.59 

(0.67) 

split loop: 
TIP, no hints 

48.35 

(0.72) 

210.40 

(0.91) 

48.45 

(0.45) 

203.94 

(1.62) 

48.50 

(0.68) 

192.81 

(2.15) 

48.32 

(0.57) 

181.94 

(2.66) 

48.09 

(0.68) 

166.01 

(0.67) 

split loop: 
TIP, no caching 

47.98 

(0.40) 

138.31 

(0.42) 

48.29 

(0.37) 

67.58 

(0.48) 

48.74 

(0.32) 

43.79 

(0.21) 

48.62 

(0.32) 

32.47 

(0.15) 

48.71 

(0.69) 

21.62 

(0.31) 

split loop: 
TIP 

46.85 

(0.25) 

81.67 

(1.88) 

47.13 

(0.42) 

40.75 

(1.19) 

46.83 

(0.42) 

29.35 

(1.18) 

47.03 

(0.40) 

23.78 

(0.30) 

47.16 

(0.88) 

18.18 

(0.27) 

Table 6.13. Postgres, 80% match, elapsed time. These are the data graphed in Figure 6.17a. The numbers 
in parentheses are the 95% confidence intervals for the averages of the five runs. 

system 
(1 disk) 

requests prefetches cache 

total faults blocks l/Os 
reuse 
hits 

prefetch 
hits misses miss 

l/Os 

original: 
Digital UNIX 

35081 

(59) 

2422 

(58) 

792 

(24) 

196 

(12) 

16157 

(86) 

354 

(14) 

18570 

(109) 

18477 

(108) 

split loop: 
Digital UNIX 

33820 

(70) 

2553 

(71) 

1174 

(6) 

248 

(2) 

20316 

(64) 

787 

(3) 

12715 

(17) 

12632 

(17) 

split loop: 
TIP, no hints 

33788 

(31) 

2522 

(26) 

1188 

(14) 

256 

(4) 

20296 

(97) 

795 

(8) 

12696 

(78) 

12618 

(78) 

split loop: 
TIP, no caching 

33921 

(26) 

2524 

(26) 

12593 

(8) 

11552 

(9) 

20263 

(23) 

12190 

O) 

1467 

(4) 

1386 

(4) 

split loop: 
TIP 

33787 

(25) 

2515 

(25) 

10300 

(314) 

5655 

(304) 

23377 

(110) 

9106 

(112) 

1303 

(7) 

1221 

(6) 

Table 6.14. Postgres, 80% match, prefetching and caching performance. Splitting the loop again 
increases reuse hits substantially. The impact of informed clustering is, again, to reduce reuse hits even while 
reducing elapsed time. 

With informed prefetching, Postgres has I/O workload concurrency and takes advan- 

tage of the parallelism of the disk array to reduce elapsed time by up to 47% for the 20%- 

match case and up to 67% for the 80%-match case. Some stall remains because Postgres 

doesn't give hints for the index lookups. Nevertheless, because most of these lookups hit 

in the cache, informed prefetching eliminates up to 73% and 87% of the stall for the 20%- 

and 80%-match benchmarks of this I/O-bound application. 

The results for stall as a function of prefetch depth shown in Figures 6.16b and 6.17b 

reveal an interesting effect on the ten-disk array: prefetching too deeply increases stall. 
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Using too many buffers for prefetching can reduce cache effectiveness and increase the 

number of cache misses. For example, for these experiments without informed caching, 

the number of cache misses for the 80%-match case increases from about 1280 at a 

prefetch depth of one to about 1880 at a prefetch depth of 256 (not shown). Although 

these are small numbers compared to the nearly 34,000 total requests, they each add about 

12 msec of stall to the elapsed time of the benchmark on ten disks or a total of about 7 sec- 

onds. 

On a single disk, more effective disk scheduling at the deeper prefetch depths reduces 

disk service time from almost 15 msec to under 12 msec per block for the 80%-match 

case. This reduction more than offsets the increase in stall from the larger number of 

misses. With a single disk, bandwidth is at premium, and the disk is the bottleneck on 

overall performance. Thus, the greatest gains come from maximizing disk performance. 

With ten disks, there is ample bandwidth and maximizing the performance of individual 

disks is less important; stall has already been masked, at least for hinted accesses. How- 

ever, the unhinted misses cannot take advantage of array parallelism and therefore stall for 

the full latency of a disk access. The stall for these unhinted accesses determines the over- 

all stall for the benchmark. 

The upper-bound prefetch horizon, P, strikes a good compromise in performance 

across array sizes. It obtains most of the benefit from improved disk scheduling on a sin- 

gle disk where it reduces total disk service time by 19% and 24% for the 20%- and 80%- 

match cases as will be seen in Table 6.15. On the other hand, stall time on ten disks is 

within, respectively, 4% and 6% of the minimum which occurs at a prefetch depth of 32 in 

both cases. The elapsed time when prefetching to a depth of P=73 is, on one disk, within 

1% of the elapsed time when prefetching to a depth of 256, and is, on ten disks, within 1% 

of the elapsed time when prefetching to a depth of 32. 

Using the hints for informed caching and informed clustering in TIP reduces the 

elapsed time of the 20%- and 80%-match cases by 4% and 31% compared to TIP, no 

caching on a single disk. TIP is able to take advantage of the hints for the many random 

inner-relation reads to increase cache effectiveness and cluster together many widely sep- 

arated accesses into a much smaller number of more sequential accesses. For the 80%- 

match case, informed caching in TIP increases the number of reuse hits by over 3000 or 
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more than 15% compared to TIP, no caching as seen in Table 6.14. And, for the 80%- 

match case, informed clustering in TIP increases the average blocks per prefetch cluster 

from 1.09 in the TIP, no caching case to 1.82. Consequently, TIP needs 5900 fewer I/Os 

to prefetch only 2300 fewer blocks. These effects are more dramatic in the 80%- than the 

20%- match case because the larger number of inner-relation accesses provides more 

opportunities for informed caching and clustering. 

The impact on elapsed time is greatest on a single disk where bandwidth is most lim- 

ited. As was the case for disk scheduling when prefetching without caching, optimizing 

disk performance is most important when the disk is the bottleneck. On ten disks, 

informed prefetching alone masks most of the stall for hinted accesses and there is little 

room for additional improvement. Nevertheless, the large reduction in the number of I/O 

accesses, especially in the 80%-match case, reduces disk-driver CPU overhead and there- 

fore reduces CPU time in that case by about 1.5 seconds or a little over 3% on ten disks. 

Unfortunately, informed clustering increases the number of prefetched blocks that are 

never accessed by about 800 to nearly 8% of the total prefetched in the 80%-match bench- 

mark. There are two reasons why so many are ejected before they can be used. First, 

because TIP's local value estimates do not generate a full clustering and caching schedule, 

but instead build clusters opportunistically around prefetches that are about to occur, some 

blocks may be clustered that cannot be cached until they are accessed. For example, a 

prefetch may present the opportunity to cluster a prefetch for access number 2000 in the 

hinted access sequence. At a later time, an opportunity to cluster-prefetch for access num- 

ber 1000 may arise. If the block for access 2000 is the least valuable, it will be ejected to 

cluster-prefetch the block for access 1000. A full schedule could have anticipated this and 

avoided cluster-prefetching block 2000 in the first place. Fortunately, cluster-prefetches 

are cheap, so the cost of ejecting some cluster-prefetched blocks is small compared to the 

benefit of the many successful cluster-prefetches. 

The second reason clustered blocks are ejected is a result of a complex interaction 

between the hinted cache and the LRU cache. When the loop is split, Postgres must read 

the outer relation twice. The first time it reads the relation, it also performs index lookups 

which push the outer-relation blocks to the tail of the LRU queue. During this phase of the 

computation, there are few hits at the tail of the queue because the outer relation is being 
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scanned sequentially, and so the tail of the LRU does not appear to be very valuable. 

Then, Postgres delivers thousands of hints for the reads of the inner-relation data blocks. 

TIP takes a few buffers from the tail of the LRU queue to begin prefetching these blocks, 

and more for clustered reads. As Postgres performs the join, it begins reaccessing the 

outer-relation tuples with unhinted reads while consuming some of the hinted inner-rela- 

tion data blocks. This hint consumption leads to more prefetching and more informed 

clustering. Eventually, prefetched and clustered blocks completely displace the outer-rela- 

tion blocks from the tail of the LRU queue. However, as Postgres continues to reaccess the 

outer-relation blocks, it scores hits on the ghost buffers at the tail of the LRU. Eventually, 

the tail of the LRU queue starts to look valuable and buffers for further prefetching and 

clustering come not from the LRU queue, but from the hinted cache which holds blocks 

for reuse and blocks that were prefetched as part of a cluster and are waiting to be 

accessed for the first time. But, because hinted blocks get put on the LRU queue after the 

hinted access occurs, the now-growing LRU queue saves some of these blocks from ejec- 

tion. The LRU estimator does not save clustered blocks, however, and many of them are 

ejected, even if they will be accessed before a recently consumed hinted block will be 

reaccessed. Of course, growing the queue does not restore the data that the ghosts once 

held and the larger queue does not gain any additional cache hits. Fortunately, the outer 

relation is read sequentially, so heuristic readahead brings its blocks back into the cache 

without adding much stall. 

This sequence of events highlights a weakness of using the LRU queue as a predictor 

of future behavior, especially at the boundary between phases in a computation when the 

characteristics of the workload are changing. It suggests that a workload that accesses its 

data exactly twice may be the worst-case scenario for the LRU estimator. Initially, there 

are no hits and the queue looks useless. Then there are ghost hits, and the queue grows. 

But, the data is never re-accessed a third time, so that larger queue does not actually 

increase the number of hits. 

Despite these difficulties with the LRU estimator, informed caching and clustering 

delivers substantial gains for this application, including up to a 31% reduction in elapsed 

time. The primary goal of informed caching is to reduce the number of blocks requested 

from disk, and the primary goal of informed clustering is to reduce the disk service time 
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per block by increasing disk workload sequentiality. Even with the ejection of some clus- 

tered prefetch blocks, informed caching in TIP reduces the number of blocks fetched from 

disk by 17% compared to Tip, no caching for the 80%-match case as shown in Table 6.15. 

And, informed clustering reduces the service time per block by 22%. So, not only does 

TIP perform fewer accesses, it services each more quickly. Clearly, these performance 

benefits far outweigh the cost of ejecting some of the clustered blocks before they are 

accessed. 

6.3.7 The impact on disk service time 

As just discussed in the context of the Postgres benchmark, TIP can improve disk per- 

formance through two mechanisms: more effective disk scheduling, and clustering 

prefetches. Table 6.15 summarizes the impact of these mechanisms on disk performance 

for all of the benchmarks on a single disk. I focus on single-disk performance because, as 

noted above, that is where the impact of improvements in disk performance on elapsed 

time is greatest. 

To help clarify the individual impact of the two mechanisms, I consider the perfor- 

mance of three system configurations. TIP, no caching (prefetch depth=0), or simply TIP, 

no caching(O), receives hints but does not use them for prefetching, although it does use 

them for clustering sequential accesses and avoiding false readahead. It shows perfor- 

mance when disk queues are short. I use it as the base case for comparison instead of Dig- 

ital UNIX because it does not suffer from false readahead which can make accesses appear 

to be highly sequential, yet it does cluster sequential accesses which Digital UNIX's 

readahead does fairly well. Thus, it represents a sort of idealized base case. TIP, no cach- 

ing shows the performance when hints are used to generate deep queues which can pro- 

vide disk-scheduling opportunities, but hints are not used for caching or clustering except 

within the prefetch horizon. Thus, by comparing its disk performance with the no cach- 

ing(O) case, it is possible to see the benefit of more effective disk scheduling that results 

from informed prefetching. Finally, TIP uses hints for prefetching, clustering and caching. 

Informed caching may reduce the number of blocks requested, but clustering is responsi- 

ble for assembling these requests into larger clusters than sequential clustering alone can 
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achieve. By comparing TIP's performance to TIP, no caching, one can see the benefit of 

using large numbers of hints to cluster widely separated accesses1. 

The first unexpected result is that service time for Davidson is higher when prefetch- 

ing in TIP, no caching than it is in TIP, no caching(O). Normally, I would expect the 

deeper queues in TIP, no caching to lead to a reduction in service time. Even though this is 

not the case here, the elapsed time does go down slightly (not shown). The service time is 

misleading in this case because of the disk's internal readahead. The wallclock time at 

which the sequential data requested by Davidson will be available is determined by the 

rotation of the disk under the read head. The service time in this case is just a measure of 

how far in advance of that time the request for the data is queued at the disk. A similar 

effect can be seen to a lesser degree for Sphinx. 

The total service time for Davidson goes down substantially in TIP as informed cach- 

ing reduces the number of blocks fetched from disk. However, the service time per block 

rises. This is because, through a dynamic of the implementation that I do not fully under- 

stand, Davidson does not end up with the single range of cached blocks suggested by Fig- 

ure 4.7 for repeated sequential access, but instead ends up with one large range and many 

small sequential groups caching random blocks in the file2. Filling the gaps between these 

groups leads to disk requests that are non-sequential and may be smaller than a full cluster 

of 8 blocks. This experience suggests that informed caching might be improved if it were 

mindful of clusters when it estimates the cost of ejecting a block. It is cheaper, both in 

terms of disk driver overhead and disk access latency, to eject a block that could be 

prefetched as part of a cluster than to eject one that would require a separate access. Incor- 

porating such cost estimates into the informed caching estimates could be an interesting 

area for future research. 

It must be noted that there is ambiguity in this comparison because informed caching may change 
the set of blocks fetched from disk and therefore the sequentiality of the disk workload before clustering. 
But, reducing the number of blocks read from disk most likely reduces, not increases the opportunities for 
sequential clustering. Thus, any increase in cluster size and reduction in service time per block for TIP com- 
pared to TIP, no caching is almost certainly the result of informed clustering. Thus, if this comparison does 
not provide definitive evidence, it does provide highly suggestive evidence of the impact of informed cluster- 
ing. 

2 My hunch is that, periodically, when a batch of buffers is moved from the annex to the LRU 
queue, some buffers suddenly become available to cache whatever blocks were last accessed by Davidson. 
As the wave of prefetching and MRU replacement moves on, these blocks remain cached. 
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XDataSlice takes care to issue its requests in ascending order in the file, so there is lit- 

tle opportunity either for disk scheduling or informed clustering for this application. 

Sphinx, during its long initialization phase which includes more than 80% of its 

accesses, issues requests in ascending order. Many of these requests benefit from sequen- 

tial readahead and so, like Davidson, the service time in TIP, no caching is higher than in 

TIP, no caching(O). Clustering, even just within the prefetch horizon in TIP, no caching, 

reduces the number of disk accesses by 340. Informed clustering in TIP ehminates more 

than 1100 more accesses, and, compared to TIP, no caching, reduces service time per 

block from 4.15 msec to 4.09 msec. One might expect a larger reduction given the many 

random accesses seen in Figure 6.8, but there are two reasons why this is not the case. 

First, the large number of nearly sequential accesses during the initialization phase do not 

provide much opportunity for substantial improvement and this brings the average down. 

Second, during the recognition phase when accesses are more random, hints are given in 

small bursts (see Figure 3.6). There is no opportunity to cluster across these bursts so the 

clustering opportunity is not as great as it appears. Informed clustering needs hints about 

many future accesses to be most effective. 

Agrep obtains a 10% reduction in disk service time for disk scheduling because 

informed prefetching can sort requests across multiple files. But, because clustering only 

happens within files as explained in Section 5.2.2, and because Agrep reads files sequen- 

tially, even TIP, no caching(O), which only clusters for sequential accesses, builds all the 

clusters possible and there is no additional benefit from using more hints for informed 

clustering. 

Gnuld derives a few percent benefit from better request sorting in TIP, no caching 

compared to TIP, no caching(O). Gnuld also derives a small additional benefit from clus- 

tering a few access from one pass over its input files with accesses to contiguous blocks in 

subsequent passes. 

Finally, as discussed at length in the previous section, Postgres' many random reads 

benefit most of all the applications from both disk scheduling and informed clustering. In 

the 20%-match case, disk scheduling in TIP, no caching reduces the service time per 

block by 19% and informed clustering in TIP further reduces it by another couple of per- 
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cent. In the 80%-match case, disk scheduling reduces average service time 24% and 

informed clustering reduces it by another 22%. 

Overall, most of the benchmark applications were able to organize their file requests 

into ascending order to start with. Consequently, for most of the benchmarks, gains from 

both scheduling and informed clustering are only a few percent. However, when applica- 

tions perform reads that are scattered randomly as is the case for Postgres, disk scheduling 

can reduce average disk service time by up to 24%. Further, if applications can provide 

hints about many accesses, as Postgres can, informed clustering can provide up to a 22% 

reduction in service time. 

6.4 Multiple-process results 

Multiprogramming I/O-intensive applications does not generally lead to efficient use 

of resources because these programs eject each other's blocks from the cache and inter- 

pose disk accesses which disturbs each other's disk access sequentiality. However, it is 

inevitable that I/O-intensive programs will be multiprogrammed. In this section, I present 

the implications of informed prefetching and caching on multiprogrammed I/O-intensive 

applications. 

When multiple applications are running concurrently, the informed prefetching and 

caching system should exhibit three basic properties. First and foremost, hints should 

increase overall throughput. Second, an application that gives hints should improve its 

own performance. Third, non-hinting applications should not suffer unfairly when a com- 

peting application gives hints. This last is a bit vague; what does it mean not to suffer 

unfairly? 

In my view, it does not mean that a non-hinter should not suffer at all when another 

application hints. All applications suffer when forced to share a machine and the extent to 

which they suffer depends on how the other applications use the machine. Without hints, 

an I/O-intensive application may be blocked on the disk so often that it interferes little 

with a CPU-intensive application. When the I/O-intensive application gives hints, it may 

stall less on the disk, use more of the CPU, and slow down the CPU-intensive application. 

But, the same thing would have happened if the CPU-intensive application had been 

forced to share the machine with another CPU-intensive application in the first place. 
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When an application gives hints, it changes the way it uses a machine's resources, but that 

does not mean it uses them unfairly. 

The previous argument only asserts slowing down a competing application is not nec- 

essarily unfair; it does not define fairness. Fairness is a deep issue, especially when multi- 

ple resources are involved and a 'fair' allocation of the disk, for example, may lead to an 

'unfair' allocation of the CPU. I do not attempt here to find answers to these hard ques- 

tions. For the purposes of this dissertation, I take it to be fair for an application to suffer so 

long as overall throughput increases. That is, it would be unfair for an application to suffer 

so much that overall throughput suffers. From this perspective, the third desired property 

listed above is really just another facet of the first property: that hints should increase 

overall throughput. The cost-benefit model attempts to reduce the sum of the I/O overhead 

and stall time for all executing applications, and thus, I expect the resource management 

algorithms to benefit multiprogrammed workloads and have the desired properties. 

To explore how well TIP meets these performance expectations, I report three pairs of 

application executions: Gnuld/Agrep, Sphinx/Davidson, and XDataSlice/Postgres. Here, 

Postgres performs the join with 80% matches and precomputes its data accesses even 

when it does not give hints. For each pair of applications, I ran all four hinting and non- 

hinting combinations on TIP starting the two applications simultaneously with a cold 

cache and measuring the elapsed time of each. Figures 6.18 through 6.20 show the results 

for Gnuld/Agrep, and Figures 6.21 through 6.23 show the results for Sphinx/Davidson and 

XDataSlice/Postgres. 

In both sets of figures, the upper graphs (Figures 6.18 and 6.21) show the impact of 

hints on throughput for the three pairs of applications. Tables 6.16 through 6.18 present 

these same results in tabular format. I report the time until both applications complete, 

broken down by total CPU time and simultaneous stall time during which the CPU is idle. 

In all cases, the maximum elapsed time decreases when one application gives hints, and 

decreases further still when both applications give hints. Simultaneous I/O stall time is 

virtually eliminated for two out of the three pairs when both applications give hints and 

the parallelism of 10 disks is available. 

The middle and lower graphs in the two sets of figures show the elapsed time for indi- 

vidual applications when paired with another application (whose name is in parentheses). 
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Figure 6.18. Elapsed time for both Gnuld and Agrep 
to complete. The pair of workloads are ran concurrently 
on TIP and the elapsed time of the last to complete is 
reported along with the total CPU busy time. For each 
number of disks, four bars are shown. These represent 
the four hint/nohint combinations. For example, the 
second bar from the left in any quartet of bars is Gnuld 
hinting and Agrep not hinting. 

Figure 6.19. Elapsed time for Gnuld when run with 
Agrep. These figures report data taken from the same 
runs on TIP as reported in Figure 6.18. However, the 
elapsed time shown represents only Gnuld's execution. 
The hint/nohint combinations are identical to Figure 
6.18. Compare bars one and two or three and four to see 
the impact of giving hints when Agrep is respectively 
non-hinting or hinting. Compare bars one and three or 
two and four to see the impact of Agrep giving hints. 

Figure 6.20. Elapsed time for Agrep when run with 
Gnuld. These figures report data from the same set of 
runs as reported in Figures 6.18 and 6.19. However, the 
inner two bars are swapped relative to the inner two bars 
of the other figures. For example, the second bar from 
the left in any quartet is Gnuld not hinting and Agrep 
hinting. Compare bars one and two or three and four to 
see the impact of giving hints when Gnuld is 
respectively non-hinting or hinting. Compare bars one 
and three or two and four to see the impact of Gnuld 
giving hints. 

Agrep (with Gnuld) 
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Figure 6.21. Elapsed time for both applications to compete. In a format identical to that of Figure 6.18, 
this figure shows the elapsed time for both of a pair of applications to complete. Results for Sphinx and 
Davidson running together are on the left, results for XDataSlice and Postgres, 80% match are on the right. 
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Figure 6.22. Elapsed time for one of a pair of applications. These figures report data taken from the same 
runs as reported in Figure 6.21. However, in a format identical to that of Figure 6.19, the times shown are for 
only one of a pair of applications running. Sphinx is on the left and XDataSlice is on the right. 
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Figure 6.23. Elapsed time for the other of a pair of applications. These figures report data from the same 
runs as Figures 6.21 and 6.22. However, the inner two bars of each quartet are swapped relative to the inner 
two bars of the other figures. Thus, in a format identical to Figure 6.20, they report the time for the other of a 
pair of applications. Davidson is on the left and Postgres, 80% match is on the right. 
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Gnuld - Agrep 
1 disk 2 disks 3 disks 4 disks 10 disks 

CPU stall CPU stall CPU stall CPU stall CPU stall 

no hint - no hint 
14.72 

(0.14) 

154.96 

(7.46) 

14.61 

(0.03) 

117.86 

(2.83) 

14.61 

(0.23) 

106.40 

(2.56) 

14.52 

(0.16) 

103.52 

(1.29) 

14.42 

(0.09) 

92.27 

(0.69) 

hint - no hint 
13.52 

(0.22) 

108.99 

(3.75) 

12.72 

(0.14) 

58.85 

(1.49) 

12.75 

(0.14) 

46.19 

(0.83) 

12.76 

(0.10) 

39.35 

(1.11) 

12.62 

(0.04) 

27.41 

(0.60) 

no hint - hint 
14.54 

(0.16) 

125.77 

(0.21) 

14.37 

(0.04) 

102.46 

(1.70) 

14.37 

(0.07) 

94.47 

(0.49) 

14.43 

(0.22) 

92.41 

(1.76) 

14.39 

(0.06) 

86.12 

(2.58) 

hint - hint 
14.30 

(0.23) 

94.22 

(2.54) 

14.23 

(0.16) 

49.64 

(0.48) 

14.19 

(0.07) 

36.92 

(0.77) 

14.22 

(0.08) 

31.79 

(0.15) 

14.42 

(0.16) 

20.50 

(0.33) 

Table 6.16. Elapsed time for both Gnuld and Agrep to complete. This table gives the complete data for 
Figure 6.18. 

Sphinx - 
Davidson 

1 disk 2 disks 3 disks 4 disks 10 disks 
CPU stall CPU stall CPU stall CPU stall CPU stall 

no hint - no hint 
263.11 

(1.25) 

268.61 

(1.43) 

265.03 

(0.52) 

154.08 

(1.65) 

270.54 

(0.67) 

88.48 

(1.40) 

296.91 

(22.8) 

85.72 

(9.27) 

272.74 

(1.54) 

58.27 

(0.38) 

hint - no hint 
267.37 

(0.52) 

235.56 

(1.34) 

270.34 

(1.45) 

93.01 

(3.33) 

278.48 

(1.46) 

23.62 

(1.13) 

278.17 

(1.04) 

26.42 

(1.43) 

279.69 

(1.37) 

10.38 

(0.36) 

no hint - hint 
263.03 

(0.94) 

172.55 

(6.14) 

265.32 

(0.86) 

105.52 

(10.4) 

267.98 

(2.61) 

62.25 

(3.18) 

269.69 

(4.98) 

66.02 

(1.56) 

268.56 

(0.67) 

50.49 

(1.08) 

hint - hint 
268.70 

(1.16) 

125.76 

(2.66) 

270.06 

(0.69) 

44.20 

(1.39) 

282.23 

(18.3) 

16.28 

(2.10) 

272.97 

(1.52) 

17.21 

(0.27) 

273.21 

(1.85) 

8.73 

(0.13) 

Table 6.17. Elapsed time for both Sphinx and Davidson to complete. The data in this table corresponds to 
the left-hand graph in Figure 6.21. 

XDataSlice - 
Postgres, 80% 

1 disk 2 disks 3 disks 4 disks 10 disks 
CPU stall CPU stall CPU stall CPU stall CPU stall 

no hint - no hint 
97.62 

(0.89) 

1005.1 

(2.12) 

95.74 

(0.39) 

616.98 

(4.39) 

94.65 

(0.77) 

466.93 

(1.99) 

95.18 

(0.73) 

458.29 

(2.70) 

95.84 

(1.36) 

347.98 

(5.05) 

hint - no hint 
86.03 

(0.79) 

642.12 

(3.32) 

82.76 

(1.01) 

356.67 

(1.28) 

82.37 

(0.37) 

270.33 

(1.43) 

83.23 

(1.91) 

265.44 

(8.15) 

82.88 

(0.27) 

182.24 

(4.26) 

no hint - hint 
92.21 

(0.95) 

587.22 

(12.6) 

91.14 

(0.34) 

396.06 

(2.93) 

92.32 

(0.41) 

328.67 

(3.07) 

89.90 

(1.31) 

316.84 

(14.1) 

100.19 

(8.61) 

256.40 

(4.65) 

hint - hint 
84.34 

(0.72) 

487.52 

(3.98) 

82.16 

(1.40) 

195.33 

(2.04) 

81.10 

(0.68) 

112.36 

(1.10) 

81.46 

(0.50) 

100.81 

(6.70) 

81.91 

(0.47) 

36.45 

(5.15) 

Table 6.18. Elapsed time for both XDataSlice and Postgres, 80% match, to complete. This is the 
complete data for the right-hand graph in Figure 6.21. 
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Although vertical columns of graphs in the figures correspond to the same test runs, the 

middle two bars in any quartet of the lower figures (Figures 6.20 and 6.23) are swapped 

relative to the middle two bars in the corresponding quartets of the middle and upper 

graphs. So, for example, in Figures 6.18 and 6.19, 'hint-nohint' means Gnuld hints while 

Agrep does not, whereas in Figure 6.20 'hint-nohint' means Agrep hints while Gnuld does 

not. Tables 6.19 through 6.24 show the prefetching and caching performance for the indi- 

vidual applications in each pair of experiments. 

A traditional goal of multiprogramming is to increase CPU utilization. These results 

show that multiprogramming I/O-intensive workloads has the opposite effect when appli- 

cations must share a single disk. For example, running Gnuld and Agrep together instead 

of serially on a single disk reduces CPU utilization by 21% from 11% to 8.7% because the 

pair of applications uses the disk much less efficiently than do either of the applications 

when running alone. Both applications read multiple files from any one directory. Because 

Digital UNIX's UFS file system tries to store individual files sequentially on the disk and 

to store multiple files from the same directory near each other on the disk surface, the disk 

workloads of both Gnuld and Agrep utilize the disk read head efficiently or, in the termi- 

nology of Chapter 2, have high sequentiality. But, because they read from different direc- 

tories, when the applications are run together on a single disk, their accesses are 

interleaved and the workload sequentiality is greatly reduced. This increases average disk 

service time from 6.9 msec to 9.3 msec. Because the single disk is the bottleneck, this 

increase in service time leads to an increase in elapsed time and the reduction in CPU uti- 

lization noted above. 

Sharing a single disk between XDataSlice and Postgres reduces disk workload sequen- 

tiality just as it did for Gnuld and Agrep. The problem is particularly acute for 

XDataSlice's many false readaheads. When running alone, the false readaheads are at 

least sequential. But, when interleaved with Postgres' accesses, these readaheads require a 

long expensive seek. Further exacerbating the problem is that when Postgres must share 

the cache with XDataSlice, its reuse hits drop from about 20,000 to about 10,000 as seen 

in the 'no hint - no hint,' single-disk row of Table 6.24. This reduction in cache effective- 

ness translates into an increase in disk load. Together these effects reduce CPU utilization 

by 41% from 15% to 8.9%. 
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Gnuld 
(with 

Agrep) 
disks 

requests prefetches cache 

total faults blocks l/Os 
reuse 
hits 

prefetch 
hits 

misses miss 
l/Os 

no hint - 

no hint 

1 
23197 

(13.7) 

766 

(13.7) 

5747 

(613) 

2673 

(317) 

11563 

(14.6) 

4593 

(106) 

7040 

(104) 

5246 

(96.0) 

10 
23201 

(7.55) 

770 

(7.55) 

5728 

(634) 

2633 

(319) 

11581 

(16.4) 

4565 

(103) 

7054 

(92.3) 

5210 

(89.3) 

hint- 

no hint 

1 
23286 

(7.55) 

854 

(7.55) 

10427 

(199) 

4302 

(80.2) 

12709 

(168) 

10296 

(173) 

280 

(6.57) 

240 

(1.82) 

10 
23296 

(6.17) 

864 

(6-17) 

10310 

(151) 

4189 

(116) 

12847 

(84.9) 

10174 

(82.5) 

274 

(6.87) 

235 

(3.31) 

no hint - 

hint 

1 
23201 

(12.3) 

770 

(12.3) 

5512 

(6.96) 

2549 

(3.19) 

11608 

(15.6) 

4557 

(5.14) 

7036 

(6.99) 

5240 

(5.18) 

10 
23273 

(18.5) 

842 

(18.5) 

5496 

(8.92) 

2515 

(4.70) 

11667 

(16.1) 

4538 

(8.00) 

7068 

(9.80) 

5216 

(10.0) 

hint - 

hint 

1 
23253 

(45.3) 

821 

(45.3) 

10499 

(276) 

4331 

(197) 

12534 

(201) 

10447 

(206) 

271 

(5.55) 

240 

(3.11) 

10 
23248 

(11.5) 

816 

(11.5) 

10451 

(123) 

4145 

(73.0) 

12587 

(84.1) 

10399 

(83.7) 

261 

(12.7) 

231 

(5.86) 

Table 6.19. Gnuld prefetching and caching performance when run with Agrep. This table shows results 
for the Gnuld runs in Figure 6.19 on arrays of one and ten disks. The shaded rows correspond to the shaded 
rows in Table 6.20 below. 

Agrep 
(with 

Gnuld) 
disks 

requests prefetches cache 

total faults blocks l/Os reuse 
hits 

prefetch 
hits 

misses miss 
l/Os 

no hint - 

no hint 

1 
3041 

(0.00) 

113 

(0.00) 

1020 

(367) 

573 

(268) 

96 

(0.00) 

1013 

(367) 

1932 

(367) 

1926 

(367) 

10 
3043 

(6.17) 

115 

(6.17) 

1019 

(367) 

513 

(257) 

98 

(5.94) 

1012 

(367) 

1932 

(367) 

1926 

(367) 

hint - 

no hint 

1 
3036 

(12.3) 

108 

(12.3) 

2932 

(5.29) 

1764 

(1.74) 

94 

(6.50) 

2929 

(5.14) 

13 

(7.55) 

6 

(3.08) 

10 
3050 

(6.17) 

122 

(6.17) 

2931 

(0.00) 

1600 

(0.00) 

104 

(5.65) 

2927 

(0.00) 

18 

(0.51) 

8 

(0.51) 

no hint - 

hint 

1 
3037 

(0.00) 

109 

(0.00) 

868 

(8.74) 

465 

(7.71) 

98 

(0.00) 

860 

(8.74) 

2078 

(8.74) 

2077 

(8.74) 

10 
3037 

(0.00) 

109 

(0.00) 

863 

(0.00) 

406 

(0.00) 

98 

(0.00) 

855 

(0.00) 

2084 

(0.00) 

2083 

(0.00) 

hint - 

hint 

1 
3036 

(12.3) 

108 

(12.3) 

2930 

(0.51) 

1763 

(0.51) 

93 

(6.17) 

2927 

(0.00) 

15 

(6.17) 

6 

(3.08) 

10 
3041 

(0.00) 

113 

(0.00) 

2931 

(1.03) 

1600 

(0.00) 

96 

(1.54) 

2928 

(3.08) 

16 

(4.63) 

7 

(2.06) 

Table 6.20. Agrep prefetching and caching performance when run with Gnuld. This table shows results 
for the Agrep runs in Figure 6.20 on arrays of one and ten disks. Just as the middle two bars were reversed in 
that figure, so the middle pairs of rows are reversed relative to Table 6.19 above. 
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Sphinx 
(with 

Davidson) 
disks 

requests prefetches cache 

total faults blocks l/Os 
reuse 
hits 

prefetch 
hits 

misses 
miss 
l/Os 

no hint - 

no hint 

1 
78745 

(16.6) 

1010 

(16.3) 

21260 

(31.4) 

4384 

(8.84) 

50800 

(160) 

17702 

(27.0) 

10243 

(165) 

4765 

(53.6) 

10 
78874 

(15.1) 

1142 

(15.1) 

21315 

(24.9) 

4359 

(10.8) 

50417 

(43.7) 

17704 

(40.8) 

10752 

(21.7) 

4982 

(17.4) 

hint- 

no hint 

1 
78630 

(25.5) 

1127 

(25.5) 

27256 

(28.5) 

6936 

(94.9) 

51175 

(37.0) 

26476 

(120) 

978 

(125) 

890 

(126) 

10 
78596 

(22.6) 

1093 

(22.6) 

28090 

(41.8) 

6955 

(73.6) 

50331 

(50.6) 

27521 

(94.6) 

744 

(89.1) 

666 

(88.0) 

no hint - 

hint 

1 
78874 

(89.6) 

1142 

(89.6) 

21294 

(40.0) 

4413 

(11.2) 

50603 

(67.7) 

17692 

(30.3) 

10578 

(56.8) 

4909 

(32.2) 

10 
78889 

(14.8) 

1157 

(14.8) 

21366 

(53.7) 

4382 

(10.2) 

50172 

(58.7) 

17629 

(56.0) 

11087 

(63.4) 

5189 

(50.9) 

hint - 

hint 

1 
78562 

(68.9) 

1059 

(68.9) 

27898 

(108) 

6931 

(93.1) 

50481 

(81.8) 

27386 

(162) 

694 

(124) 

609 

(122) 

10 
78595 

(21.2) 

1092 

(21.2) 

28321 

(106) 

7025 

(72.2) 

50165 

(120) 

27671 

(149) 

758 

(54.6) 

680 

(58.2) 

Table 6.21. Sphinx prefetching and caching performance when run with Davidson. This table shows 
results for the Sphinx runs in Figure 6.22a on arrays of one and ten disks. The shaded rows correspond to the 
shaded rows in Table 6.22 below. 

Davidson 
(with 

Sphinx) 
disks 

requests prefetches cache 

total faults blocks l/Os reuse 
hits 

prefetch 
hits 

misses 
miss 
l/Os 

no hint - 

no hint 

1 
147029 

(0.63) 

1128 

(0.00) 

124859 

(5.65) 

15977 

(1.03) 

21368 

(0.63) 

124828 

(4.63) 

832 

(4.63) 

254 

(3.08) 

10 
147563 

(93.1) 

1663 

(93.1) 

124859 

(14.1) 

16083 

(7.55) 

21796 

(74.7) 

124797 

(12.2) 

970 

(9.06) 

336 

(6.24) 

hint - 

no hint 

1 
147397 

(2.86) 

1495 

(1.99) 

64212 

(537) 

10185 

(232) 

83115 

(526) 

64073 

(532) 

208 

(28.3) 

136 

(29.4) 

10 
147446 

(172) 

1544 

(172) 

61913 

(845) 

10146 

(488) 

85442 

(1010) 

61794 

(852) 

209 

(115) 

166 

(115) 

no hint - 

hint 

1 
147330 

(72.7) 

1430 

(72.5) 

124964 

(27.4) 

16017 

(10.0) 

21566 

(66.5) 

124897 

(15.7) 

867 

(8.43) 

277 

(3.49) 

10 
147568 

(87.9) 

1668 

(87.9) 

124862 

(16.6) 

16085 

(6.21) 

21799 

(74.1) 

124796 

(12.6) 

972 

(4.03) 

336 

(3.00) 

hint - 

hint 

1 
147299 

(153. 

1397 

(153) 

61536 

(1990) 

9770 

(90.3) 

85698 

(1890) 

61414 

(1950) 

187 

(40.8) 

137 

(30.7) 

10 
147527 

(142) 

1625 

(142) 

60224 

(571) 

9576 

(362) 

87220 

(627) 

60143 

(586) 

163 

(6.83) 

118 

(7.24) 

Table 6.22. Davidson prefetching and caching performance when run with Sphinx. This table shows 
results for the Davidson runs in Figure 6.23a on arrays of one and ten disks. Just as the middle two bars were 
reversed in that figure, so the middle pairs of rows are reversed relative to Table 6.21 above. 
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XDataSlice 
(with 

Postgres) 
disks 

requests prefetches cache 

total faults blocks l/Os reuse 
hits 

prefetch 
hits 

misses 
miss 
l/Os 

no hint - 

no hint 

1 
48467 

(41.6) 

2105 

(41.6) 

60815 

(10.3) 

22722 

(2.97) 

2836 

(32.9) 

25417 

(8.26) 

20213 

(6.97) 

20160 

(3.15) 

10 
48322 

(326) 

1961 

(326) 

60873 

(53.8) 

22691 

(19.6) 

2705 

(290) 

25412 

(38.2) 

20205 

(25.0) 

20155 

(16.9) 

hint- 

no hint 

1 
48253 

(82.3) 

1892 

(82.3) 

45287 

(32.9) 

14862 

(15.7) 

2794 

(50.9) 

45272 

(31.3) 

186 

(14.2) 

142 

(11.9) 

10 
48191 

(48.3) 

1830 

(48.3) 

44965 

(19.8) 

14905 

(14.5) 

3061 

(42.2) 

44951 

(18.9) 

179 

(2.44) 

136 

(2.38) 

no hint - 

hint 

1 
48770 

(204) 

2409 

(204) 

60860 

(46.7) 

22738 

(18.1) 

3068 

(155) 

25460 

(29.9) 

20241 

(20.1) 

20178 

(14.2) 

10 
48598 

(37.3) 

2228 

(38.0) 

60937 

(31.6) 

22715 

(10.5) 

2889 

(65.2) 

25465 

(22.9) 

20243 

(8.85) 

20181 

(7.06) 

hint - 

hint 

1 
48251 

(54.3) 

1890 

(54.3) 

45323 

(45.6) 

14878 

(13.2) 

2758 

(48.0) 

45309 

(43.7) 

184 

(12.3) 

140 

(10.3) 

10 
48211 

(40.7) 

1850 

(40.7) 

44986 

(11.4) 

14909 

(21.3) 

3057 

(37.9) 

44973 

(12.2) 

180 

(4.81) 

137 

(4.19) 

Table 6.23. XDataSlice prefetching and caching performance when run with Postgres, 80% match. 
This table shows results for the XDataSlice runs in Figure 6.22b on arrays of one and ten disks. The shaded 
rows correspond to the shaded rows in Table 6.24 below. 

Postgres 
(with 

XDataSlice) 
disks 

requests prefetches cache 

total faults blocks l/Os reuse 
hits 

prefetch 
hits misses 

miss 
l/Os 

no hint - 

no hint 

1 
33697 

(44.6) 

2430 

(44.2) 

1173 

(14.9) 

253 

(9.36) 

10440 

(87.6) 

369 

(9.81) 

22887 

(88.1) 

22791 

(86.4) 

10 
33702 

(29.0) 

2435 

(30.7) 

1308 

(10.8) 

271 

(7.68) 

10140 

(385) 

429 

(26.9) 

23132 

(404) 

23039 

(403) 

hint- 

no hint 

1 
33719 

(8.11) 

2449 

(6.17) 

10072 

(157) 

6139 

(98.3) 

17018 

(344) 

9305 

(97.7) 

7395 

(247) 

7299 

(246) 

10 
33654 

(105) 

2384 

(106) 

11019 

(751) 

6206 

(573) 

15082 

(738) 

9772 

(560) 

8800 

(470) 

8721 

(468) 

no hint - 

hint 

1 
33750 

(7.33) 

2475 

(7.55) 

1133 

(1.74) 

248 

(1.26) 

12582 

(121) 

421 

(5.83) 

20747 

(115) 

20647 

(115) 

10 
33732 

(52.3) 

2457 

(52.8) 

1172 

(6.05) 

244 

(3.51) 

18168 

(341) 

679 

(4.22) 

14885 

(360) 

14786 

(367) 

hint- 

hint 

1 
33727 

(21.3) 

2449 

(22.6) 

10117 

(84.3) 

6010 

(339) 

15207 

(192) 

9261 

(153) 

9258 

(100) 

9156 

(97.7) 

10 
33764 

(39.7) 

2486 

(38.2) 

10619 

(283) 

5616 

(200) 

21298 

(407) 

9040 

(107) 

3425 

(414) 

3334 

(424) 

Table 6.24. Postgres, 80% match, prefetching and caching performance when run with XDataSlice. 
This table shows selected results for the Postgres runs in Figure 6.23b. Just as the middle two bars were 
reversed in that figure, so the middle pairs of rows are reversed relative to Table 6.23 above. 
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Sphinx and Davidson are well-behaved when they ran together on a single disk and 

CPU utilization is unchanged. Neither of them use much cache when not hinting, so shar- 

ing the cache does not cause extra misses. And, both of them do a fair number of multi- 

block sequential accesses which get clustered into large disk accesses. These large 

accesses are fairly efficient so that interleaving them only increases aggregate disk service 

time by 7%. The two applications do enough computation for multiprogramming to mask 

most of this modest increase in disk service time, and CPU utilization remains roughly 

constant at about 50%. 

In contrast to the single-disk performance, multiprogramming on disk arrays can not 

only increase processor utilization, but also expose I/O concurrency. Qualitative examina- 

tion of the 'no hint - no hint' bars in the graphs shows that, in contrast to single-applica- 

tion performance, larger arrays reduce elapsed time for multiprogrammed, I/O-intensive 

applications. Quantitatively, on a three-disk array and for all three pairs of applications, 

the CPU utilization when multiprogramming is within 5% of the utilization when execut- 

ing the applications serially. A ten-disk array turns Gnuld/Agrep's 21% reduction in CPU 

utilization into a 17% increase and XDataSlice/Postgres' 41% reduction into a 21% 

increase. In an age when processor cost is declining rapidly, the greater CPU utilization 

when multiprogramming these applications compared to their serial execution is not a 

compelling argument for multiprogramming. However, for a machine that is multipro- 

grammed, these results do provide compelling evidence of the benefit of using a disk 

array. 

The real goal of these experiments, though, is to understand how informed prefetching 

and caching behaves in a multiprogrammed environment. To see the impact of giving 

hints on an individual application's elapsed time when a second non-hinting application is 

run concurrently, compare bars one and two in Figures 6.19/6.20 and 6.22/6.23. Compare 

bars three and four to see the impact when the second application is giving hints. 

In most cases, giving hints substantially reduces an application's elapsed time. In fact, 

the reductions on one disk are generally greater than when the applications are running by 

themselves. By queuing multiple requests, prefetching allows better request scheduling 

which compensates for the loss of disk workload sequentiality that results when the 

accesses of two applications are interleaved. An exception is Davidson when running with 
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Sphinx as shown on the left in Figure 6.23. Without hints, Davidson's aggressive non- 

hinting readahead lets it monopolize a single disk and Sphinx spends a lot of time waiting 

for Davidson's accesses to complete. When Davidson gives hints, informed caching 

increases reuse hits which reduces the load on the disk and Sphinx's I/Os complete more 

quickly leading Sphinx to demand more of the CPU. This reduces the benefit Davidson 

sees from its hints when it is multiprogrammed with Sphinx. Effectively, Davidson ends 

up sharing some of the benefit of its hinting with Sphinx. 

This brings us to the effect of hints on other applications running in the system. To see 

the impact on a non-hinting application of another application giving hints, compare the 

first and third bars in Figures 6.22 and 6.23. Comparing the second to fourth bars shows 

the impact on a hinting application. As described above, and is clear from Figure 6.22, 

Sphinx derives substantial benefit from Davidson's hints. On the other hand, when Sphinx 

hints, it is able to compete more effectively against Davidson's readaheads. Davidson no 

longer dominates resource usage and consequently Davidson slows down when Sphinx 

hints. A reverse effect befalls Agrep when Gnuld hints. In that case, when Gnuld hints, it 

becomes an aggressive user of disk resources which delays Agrep. But, in most cases, the 

non-hinting application benefits from the hinter's more efficient usage of resources which 

leaves more resources for the non-hinter. Non-hinters may also benefit simply because the 

hinter completes more quickly and relinquishes resources. Postgres, for example, benefits 

when XDataSlice completes and leaves it the cache buffers for its index lookups as is evi- 

dent from the large number of reuse hints in the last two 10-disk rows of Table 6.24 which 

show performance when XDataSlice is hinting. 

Stepping back from the details of the dynamics of these pairs of applications, the over- 

all conclusion is that when one application hints, throughput increases. And when the sec- 

ond application also hints, throughput increases further. When an application hints, it may 

become a more aggressive consumer of system resources at the expense of competing 

applications. However, as the analysis of the performance when neither application hints 

showed, applications suffer when they must share resources, and how much they suffer 

depends on which other application they must share with. But, because the TIP informed 

prefetching and caching system allocates resources to reduce overall I/O service time, it 

only takes a resource from one application and allocates it to another if the second applica- 



TIP PERFORMANCE EVALUATION 111 

tion will make better use of the resource. The first application may suffer, but overall 

throughput increases. As these experiments show, TIP does take advantage of hints to 

reduce I/O service time and improve overall performance. Thus, TIP achieves its stated 

goals: for a single application, TIP reduces elapsed time; and when multiprogramming 

multiple applications, TIP increases throughput. 

6.5 Lessons from prefetching and caching experiments 

In this section, I distill the experience gained from the experiments into a number of 

general lessons about informed prefetching and caching and about the performance of I/O- 

intensive applications. 

1. Serial workloads need prefetching to take advantage of array parallelism. This 

insight was one of the original motivations for this work. It is important enough to 

restate here and observe that, without informed prefetching, five of the six bench- 

mark applications studied in this dissertation derive little benefit from even a ten- 

disk array as shown way back in Figure 2.2. Sequential readahead is able to take 

advantage of parallel transfer from an array for Davidson's large sequential accesses. 

But, without some form of effective prefetching, disk arrays do not significantly 

reduce elapsed time for applications with serial workloads. 

2. Informed prefetching obtains its greatest performance gains from prefetching in par- 

allel, not from overlapping I/O and CPU. Prefetching is most commonly thought of 

as a technique for overlapping I/O and CPU. But, by far the greatest reduction in 

elapsed time comes when TIP takes advantage of an array to prefetch in parallel for a 

serial workload. From Table 6.25, prefetching to overlap I/O and computation for 

these benchmarks {TIP, no caching on one disk) reduces elapsed time by up to 28% 

or an average of 17%. But, prefetching in parallel from a ten-disk array {TIP, no 

caching on ten disks) reduces elapsed time by up to 84% or an average of 63%. This 

latter performance gain is well in excess of the 50% maximum possible gain for 

overlapping I/O and computation which was described in Figure 2.3. 

3. Informed caching can increase cache effectiveness. When applications repeatedly 

access more unique blocks than fit in the cache, informed caching can increase the 
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benchmark 
1 disk 2 disks 3 disks 4 disks 10 disks 

TIP, no 
cache 

TIP 
TIP, no 
cache 

TIP 
TIP, no 
cache 

TIP 
TIP, no 
cache 

TIP 
TIP, no 
cache 

TIP 

Davidson 0.99 0.63 0.98 0.81 0.97 0.88 0.96 0.88 0.90 0.83 

XDataSlice 0.74 0.73 0.47 0.47 0.35 0.35 0.30 0.30 0.18 0.18 

Sphinx 0.93 0.93 0.83 0.83 0.79 0.80 0.79 0.79 0.77 0.78 

Agrep 0.83 0.83 0.48 0.49 0.37 0.37 0.28 0.28 0.16 0.16 

Gnuld 0.81 0.76 0.50 0.46 0.41 0.38 0.35 0.34 0.26 0.26 

Postgres, 20% 0.81 0.77 0.61 0.59 0.56 0.54 0.54 0.52 0.53 0.51 

Postgres, 80% 0.72 0.50 0.46 0.35 0.38 0.32 0.35 0.31 0.33 0.31 

geom. mean 0.83 0.72 0.59 0.55 0.51 0.48 0.46 0.44 0.37 0.36 

Table 6.25. Performance summary for all the benchmarks. This table shows, for each benchmark and 
each array size, the elapsed time for TIP, no caching and TIP as a fraction of the elapsed time for TIP, no 
hints on the same array size. I use TIP, no hints instead of Digital UNIX as the base case to eliminate factors 
such as the LRU annex and focus instead on the impact of prefetching, caching, and clustering. The averages 
in the last row are the geometric mean of the numbers in each column. 

number of reuse hits and reduce dependence on the disk. When coupled with 

informed clustering in TIP, informed caching reduces elapsed time by up to 36% or 

an average of 13% compared to TIP, no caching on a single disk where informed 

prefetching is least effective. 

4. Informed prefetching enables more effective disk scheduling that increases workload 

sequentiality when accesses are not already in ascending block-address order. 

Informed prefetching uses hints to build larger disk queues which provides more 

opportunity for disk scheduling to sort requests and reduce average disk service time 

per block by up to 24%. But, sorting requests into ascending block-address order 

with the CSCAN algorithm only increases sequentiality if the requests are not 

already in ascending order. Many of the benchmarks do not perform sequential 

accesses, but do issue requests in ascending order and do not benefit significantly 

from more effective disk scheduling. However, when any of the benchmarks are 

multiprogrammed, the aggregate workload of the interleaved accesses is not in 

ascending order and disk scheduling can increase disk performance. 

5. Informed clustering can substantially reduce disk service time for random accesses. 

Clustering sequential reads can reduce the CPU overhead servicing disk accesses, 

but because most modern disks perform their own sequential readahead, clustering 
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does not deliver sequential data any sooner. But, when clustering turns many random 

requests into fewer, larger ones, clustering increases disk workload sequentiality 

which, as seen in the Postgres benchmarks, can reduce disk service time by up to 

22%. 

6. Informed clustering can increase the number of blocks transferred from disk. 

Informed clustering only fetches blocks that are valuable enough to cache at the time 

they are fetched. But, value estimates are dynamic and better uses of the buffers 

holding cluster-prefetch blocks may arise, including the opportunity to cluster- 

prefetch for an access that will occur sooner. Any ejected cluster-prefetch blocks will 

have to be fetched from disk a second time, increasing the total blocks transferred 

from disk. In none of the experiments did this effect lead to a net increase in elapsed 

time because clustering accesses decreases per-block service time more than enough 

to offset the cost of refetching some ejected clustered-prefetch blocks. 

7. Cache replacement decisions affect disk workload sequentiality. Ejecting a hinted 

block implies a subsequent prefetch of the block. If the ejected block is contiguous 

to another uncached, hinted block, it may be possible to prefetch both in a single 

cluster. On the other hand, if the ejected block is not contiguous to any other hinted 

block, prefetching it will require a separate disk access. Clearly, the sequentiality of 

these prefetches is greater in the former case. Developing ejection cost estimates that 

are sensitive to the difference in cost between clustered prefetch and non-clustered 

prefetches would be an interesting area of future research. 

8. Optimizing disk performance is most beneficial on a single disk. More effective disk 

scheduling and request clustering which both increase workload sequentiality and 

therefore disk read-channel utilization only have a significant impact on elapsed time 

when the disk is the bottleneck on system performance. The disk bottleneck is most 

acute on a one-disk array and so that is where these techniques are most beneficial. 

When the disk is not the bottleneck, improvements in disk performance do not help 

improve the performance of whatever other system component is the bottleneck and 

so have a much smaller impact on overall performance. 
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9. Informed prefetching from an array can compensate for poor workload sequential- 

ity. This is the dual of the previous rule. The cheapest way to obtain high I/O 

throughput is with sequential accesses to a small number of disks. A single modern 

disk drive can deliver about 10 MBytes/sec for a purely sequential workload. But, 

when forced to perform random 8-KByte accesses, its throughput drops to about 1 

MByte/sec. Informed prefetching can take advantage of an array of ten disks to 

deliver 10 MBytes/sec despite poor workload sequentiality. It is still cheaper to 

obtain needed throughput with sequential accesses, but when sequential accesses are 

difficult or impossible to generate, informed prefetching from an array provides an 

alternative strategy that can compensate for poor access sequentiality and deliver the 

needed storage bandwidth. 

10. Multiprogramming I/O-intensive workloads on one disk reduces throughput. When 

the limited bandwidth of a single disk is the bottleneck in a system, maximizing uti- 

lization of the disk maximizes system throughput. Interleaving accesses from multi- 

ple I/O-intensive applications, in general, reduces the sequentiality of the aggregate 

disk workload which reduces disk-head utilization and therefore disk throughput. 

This loss of disk throughput reduces system throughput by as much as 41% com- 

pared to serial execution of the applications. Informed prefetching mitigates this 

effect through improved disk scheduling, but system throughput still drops. 

11. Multiprogramming increases I/O concurrency and therefore the throughput of a disk 

array. I already noted above that individual applications with serial disk workloads 

cannot exploit array parallelism. Multiprogramming such applications can generate 

HO concurrency which increases array throughput. But, if the array is too small, 

interleaving accesses reduces the throughput of the individual disks which can 

negate the increase in throughput from I/O concurrency. In the two-application 

experiments, the break-even point was at about three disks; multiprogramming two 

applications on four or more disks increases throughput relative to serial execution. 

In contrast to informed prefetching which increases I/O concurrency and reduces 

elapsed time for individual applications, multiprogramming only increases aggregate 
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benchmark 
1disk 2 disks 3 disks 4 disks 10 disks 

1 
hinter 

both 
hint 

1 
hinter 

both 
hint 

1 
hinter 

both 
hint 

1 
hinter 

both 
hint 

1 
hinter 

both 
hint 

Gnuld with 

Agrep 

0.72 
0.64 

0.54 
0.48 

0.49 
0.42 

0.44 
0.39 

0.38 
0.33 

0.83 0.88 0.90 0.91 0.94 

Sphinx with 

Davidson 

0.95 
0.74 

0.87 
0.75 

0.84 
0.83 

0.80 
0.76 

0.88 
0.85 

0.82 0.88 0.92 0.88 0.96 

XDataSlice with 

Postgres, 80% 

0.66 
0.52 

0.62 
0.39 

0.63 
0.34 

0.63 
0.33 

0.60 
0.27 

0.62 0.68 0.75 0.73 0.80 

geom. mean 0.76 0.63 0.73 0.52 0.74 0.49 0.71 0.46 0.73 0.42 

Table 6.26. Performance summary for the multiprogramming experiments. This table shows, for each 
array size, the elapsed time until both benchmarks complete when one of a pair and when both give hints as 
a fraction the elapsed time when neither gives hints. In the 1 hinter columns, the hinter is the benchmark that 
appears on the same row as the ratio. The average row gives the geometric average of each column. 

I/O concurrency which increases system throughput but does not reduce elapsed 

time for individual applications. 

12. On a single disk, informed prefetching and caching are even more beneficial when 

multiprogramming than when executing applications serially. Table 6.26 summa- 

rizes the results of the multiprogramming experiments. When both of a pair of 

benchmarks give hints, TIP reduces elapsed time by an average of 37% compared to 

28% when the benchmarks run alone. Managing the disk and cache well is even 

more important when multiprogramming is reducing the effectiveness of their use. 

13. Informed prefetching can derive a large benefit from even a small number of out- 

standing hints. Because prefetching out to the prefetch horizon effectively eliminates 

stall for hinted accesses when an array is available, it follows that informed prefetch- 

ing does not require hints beyond the prefetch horizon. In fact, as can be seen from 

the graphs showing stall time as a function of prefetch depth, large reductions in stall 

are possible at prefetch depths much smaller than the prefetch horizon. It is impor- 

tant that applications disclose multiple accesses at once, but it is not necessary to dis- 

close thousands at once. Nevertheless, I do not recommend that programmers tune 

their hint-giving to the prefetch horizon. Giving as many hints as possible will help 

ensure that there are enough hints for future machines with larger prefetch horizons. 
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Furthermore, deep hints are beneficial for informed clustering and caching, as noted 

below. 

14. To be useful, hints do not need to be given far in advance if they are given in batches 

and an array is available. Hints given far in advance are useful for overlapping I/O 

with computation. But, achieving the much larger performance gains of parallel 

prefetching requires multiple outstanding hints at a time but not much advance 

notice. XDataSlice, for example, discloses its hints and immediately starts reading 

data, but still derives a huge benefit from I/O parallelism. 

15. Deep hints are needed for informed clustering and caching. Informed clustering can 

merge widely separated accesses into one. Informed caching can hold onto blocks 

for hundreds or thousands of accesses. But, clustering and caching thousands of 

accesses in advance requires hints for thousands of accesses. The more accesses dis- 

closed, the greater the opportunity for clustering and caching. Because these optimi- 

zations are most important on a single disk or small arrays, it follows that deep hints 

are most important there as well. 

16. Heuristic prefetching needs to be more adaptive than existing readahead strategies. 

Digital UNIX has an adaptive sequential readahead strategy that scales its depth of 

prefetching in proportion to the number of blocks read sequentially. This strategy 

works well for Davidson's sequential workload, but hurts performance when appli- 

cations such as XDataSlice and Gnuld read a few blocks sequentially and then seek 

to a new offset. The readahead strategy could possibly reduce the number of these 

harmful, false readaheads if it monitored the success of its prefetches and adapted its 

aggressiveness accordingly. 

17. The LRU queue is an imperfect predictor of future behavior. The LRU algorithm is 

the most common heuristic for determining which blocks to cache and which to 

eject. Yet, it is an imperfect estimator for the value of caching blocks for unhinted 

accesses that is especially vulnerable to phase transitions. Postgres, for example, 

grows the LRU queue in fruitless attempt to achieve cache hits on the already ejected 
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outer-relation blocks. Its twice-accessed workload is particularly bad for LRU esti- 

mation. 

18. Pathologically unbalanced disk loads exist. Striping effectively balances the load for 

most of the applications, but XDataSlice demonstrates that simple striping is not a 

universal solution. Randomized striping could help balance the load within a single 

device, but there will inevitably be imbalances among devices. Ideally, prefetching 

and caching should be sensitive to such imbalances and adapt accordingly. Recent 

work has shown how this can be done [Kimbrel96, Tomkins97]. 

6.6 System overhead 

TIP's cost-benefit cache management adds both CPU and memory overheads to the 

system. In this section, I quantify these overheads. 

To measure the CPU overheads of the different components of the system, I added 

hand-coded trace points to the entry and exit of selected functions and collected traces of 

five runs of each of the benchmark applications. I post-processed the traces to determine 

how much time was spent in the different components of the system. 

6.6.1 Tracing infrastructure 

Each trace record contains 8 bytes. The time stamp, occupying 4 bytes, is the current 

value of the Digital Alpha processor cycle counter which has a resolution of 1/175 MHz. 

Two bytes are used for a tag that uniquely identifies each trace point. The last two bytes 

are available for a parameter which is used only when switching from one task to another 

to record the process id of the old and new processes. 

When tracing is on, trace records are stuffed into a statically-allocated in-kernel buffer 

64 MBytes in size which is large enough for about 8 million trace records. When the 

benchmark run is finished, tracing is turned off and the contents of the buffer are read and 

stored in a file for later processing. Because the buffer is so large, it disturbs the normal 

paging behavior of some of the benchmarks. To compensate, an additional 64 MBytes of 

RAM were added to the system during tracing runs. 

To minimize tracing overhead, there is no locking on the trace buffer. Instead, con- 

flicts for the buffer are detected and compensated for during post-processing by checking 
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for backwards-moving time stamps. Also, rather than checking for buffer overflow, the 

size of the buffer is restricted to be a power of two, and the high-order bits of the index 

into the buffer are masked off, effectively implementing a circular buffer. At the end of a 

tracing run, all of the bits of the index into the trace buffer are checked to ensure that there 

has been no wrap-around. The number of records collected during a run ranges from a low 

of about 130,000 for Agrep running on Digital UNIX to a high of about 8,400,0003 for 

Davidson when hinting on TIP. Each trace record adds about 40 cycles of overhead.There 

is some variation due to cache effects. This overhead is substantially lower than auto- 

mated techniques such as Digital's ATOM [Eustace95] package which would have added 

a few hundred cycles per record. 

6.6.2 CPU overhead 

Table 6.27 analyzes the CPU activity of the seven benchmarks into six categories. 

User is the time spent at user level between system calls. It does not include time spent 

servicing disk interrupts, but it does include untraced interrupts, such as the clock. System 

total reports the total CPU time spent in system calls by the application plus disk inter- 

rupts plus idle-process I/O-completion activity. Because these are I/O-intensive bench- 

marks, almost all system time is spent in the file system. The table reports the total time for 

the file system and breaks this into four sub-categories, copy, I/O, TIP, and other. It gives 

the 95% confidence interval based on the five runs in parentheses and the percentage of 

the total file-system time spent in each of these sub-categories. Copy is the time spent 

moving data between user space and the kernel cache buffers. I/O is time spent marshal- 

ling buffers for disk accesses plus time spent actually performing the accesses including 

queuing requests, initiating them at the drive, and servicing interrupts. Idle-process I/O 

activity is included here. I/O interrupts serviced by other processes are not included, but 

this time is only about 1-3% of the total time for I/O. It is interesting, for example, to note 

the large reduction in the time XDataSlice spends on I/O when it gives hints and does not 

suffer from false readahead. Other includes all other file-system activity in the unmodified 

system, including time spent going through the vnode layer, finding blocks in the cache, 

3 This one run requires a little more than 64 MBytes of RAM, so I enlarged the buffer a little, but 
lied to the tracing code, telling it there was a 128 MByte buffer, and kept my fingers crossed that the run 
completed before the buffer was overrun. Fortunately, it did. 
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benchmark system user 
system 

total 
file system 

total copy I/O TIP other 

Davidson 

Digital UNIX 
82.01 
(0.63) 

26.83 
(0.21) 

26.65 
(0.19) 

100.0% 

14.68 
(0.12) 
55.1% 

5.91 
(0.09) 

22.2% 

0.00 
(0.00) 
0.0% 

6.07 
(0.08) 
22.8% 

TIP, no hints 
83.47 
(0.93) 

31.64 
(0.46) 

31.45 
(0.45) 

100.0% 

14.89 
(0.26) 
47.3% 

5.61 
(0.19) 
17.8% 

4.39 
(0.09) 
14.0% 

6.57 
(0.08) 

20.9% 

TIP 
81.19 
(1.12) 

29.43 
(0.23) 

29.24 
(0.23) 

100.0% 

14.27 
(0.14) 

48.8% 

3.11 
(0.20) 
10.6% 

7.60 
(0.04) 
26.0% 

4.26 
(0.05) 
14.6% 

XDataSlice 

Digital UNIX 
11.46 
(0.01) 

26.72 
(0.09) 

25.83 
(0.07) 

100.0% 

7.73 
(0.01) 

29.9% 

12.21 
(0.03) 
47.3% 

0.00 
(0.00) 
0.0% 

5.89 
(0.05) 

22.8% 

TIP, no hints 
11.48 
(0.06) 

29.38 
(0.15) 

28.38 
(0.15) 

100.0% 

7.70 
(0.01) 

27.1% 

11.81 
(0.02) 
41.6% 

2.72 
(0.02) 
9.6% 

6.15 
(0.12) 

21.7% 

TIP 
11.43 
(0.02) 

21.73 
(0.36) 

20.72 
(0.35) 

100.0% 

7.74 
(0.01) 
37.3% 

4.74 
(0.31) 

22.9% 

3.76 
(0.02) 
18.1% 

4.48 
(0.02) 

21.6% 

Sphinx 

Digital UNIX 
133.67 
(0.46) 

11.18 
(0.05) 

9.89 
(0.06) 

100.0% 

3.08 
(0.03) 
31.1% 

2.90 
(0.03) 
29.3% 

0.00 
(0.00) 
0.0% 

3.92 
(0.03) 
39.6% 

TIP, no hints 
135.15 
(1.30) 

13.52 
(0.39) 

12.03 
(0.34) 

100.0% 

3.10 
(0.04) 
25.7% 

2.98 
(0.04) 

24.8% 

1.33 
(0.01) 
11.1% 

4.62 
(0.28) 
38.4% 

TIP 
136.88 
(0.86) 

14.84 
(0.07) 

13.32 
(0.09) 

100.0% 

3.09 
(0.03) 
23.2% 

2.27 
(0.02) 
17.1% 

3.21 
(0.03) 
24.1% 

4.75 
(0.03) 
35.7% 

Agrep 

Digital UNIX 
0.60 

(0.01) 
1.64 

(0.08) 
1.24 

(0.08) 
100.0% 

0.25 
(0.03) 
20.2% 

0.68 
(0.04) 
54.9% 

0.00 
(0.00) 
0.0% 

0.31 
(0.03) 
24.9% 

TIP, no hints 
0.60 

(0.02) 
1.73 

(0.03) 
1.31 

(0.03) 
100.0% 

0.24 
(0.01) 
18.0% 

0.68 
(0.03) 
51.8% 

0.09 
(0.00) 
7.1% 

0.30 
(0.01) 

23.0% 

TIP 
0.59 

(0.00) 
1.81 

(0.02) 
1.35 

(0.02) 
100.0% 

0.23 
(0.00) 
16.9% 

0.47 
(0.01) 
34.7% 

0.34 
(0.00) 
25.2% 

0.31 
(0.01) 
23.2% 

Gnuld 

Digital UNIX 
5.23 

(0.03) 
5.37 

(0.11) 
4.88 

(0.10) 
100.0% 

1.14 
(0.01) 

23.3% 

2.20 
(0.07) 
45.0% 

0.00 
(0.00) 
0.0% 

1.55 
(0.04) 

31.8% 

TIP, no hints 
5.21 

(0.01) 
6.14 

(0.10) 
5.57 

(0.10) 
100.0% 

1.14 
(0.00) 
20.4% 

2.24 
(0.07) 

40.2% 

0.55 
(0.01) 
9.8% 

1.64 
(0.02) 
29.5% 

TIP 
5.27 

(0.02) 
6.01 

(0.11) 
5.47 

(0.11) 
100.0% 

1.15 
(0.00) 
21.1% 

1.39 
(0.05) 
25.5% 

1.31 
(0.02) 
24.0% 

1.61 
(0.05) 

29.5% 

Table 6.27. CPU profile by benchmark. This table shows the CPU time in seconds that each benchmark 
spends in user and system code and the system time spent in the file system. File system time is broken into 
four categories: copying data between user and system space (copy); initiating and servicing disk requests 
(I/O); in TIP-specific activities (TIP); and in all other activities such as reassigning buffers from one block to 
another (other). The numbers in parentheses are the 95% confidence intervals based on five runs. Table 6.28 
summarizes these numbers. 
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benchmark system user system 
total 

file system 

total copy I/O TIP other 

Postgres, 
20% match 

Digital UNIX 
24.43 
(0.10) 

3.22 
(0.08) 

3.05 
(0.06) 

100.0% 

1.02 
(0.01) 
33.5% 

1.22 
(0.03) 
40.1% 

0.00 
(0.00) 
0.0% 

0.81 
(0.03) 
26.4% 

TIP, no hints 
24.82 
(0.18) 

3.62 
(0.03) 

3.44 
(0.03) 

100.0% 

1.07 
(0.01) 
31.1% 

1.26 
(0.02) 
36.6% 

0.27 
(0.01) 
7.9% 

0.84 
(0.02) 
24.4% 

TIP 
24.45 
(0.59) 

3.69 
(0.04) 

3.51 
(0.03) 

100.0% 

1.09 
(0.01) 

31.0% 

1.03 
(0.02) 
29.4% 

0.51 
(0.02) 
14.5% 

0.88 
(0.02) 
25.0% 

Postgres, 
80% match 

Digital UNIX 
36.01 
(0.41) 

10.26 
(0.12) 

9.74 
(0.10) 

100.0% 

3.64 
(0.06) 
37.4% 

3.65 
(0.03) 
37.5% 

0.00 
(0.00) 
0.0% 

2.45 
(0.04) 

25.1% 

TIP, no hints 
36.95 
(0.34) 

11.71 
(0.12) 

11.06 
(0.12) 

100.0% 

3.58 
(0.01) 
32.4% 

3.67 
(0.06) 
33.2% 

1.02 
(0.04) 
9.2% 

2.79 
(0.13) 

25.2% 

TIP 
35.88 
(0.34) 

11.27 
(0.14) 

10.63 
(0.13) 

100.0% 

3.79 
(0.03) 
35.6% 

1.96 
(0.04) 
18.5% 

2.16 
(0.07) 

20.3% 

2.72 
(0.07) 
25.6% 

Table 6.27. CPU profile by benchmark. This table shows the CPU time in seconds that each benchmark 
spends in user and system code and the system time spent in the file system. File system time is broken into 
four categories: copying data between user and system space {copy); initiating and servicing disk requests 
(I/O); in TIP-specific activities (TIP); and in all other activities such as reassigning buffers from one block to 
another (other). The numbers in parentheses are the 95% confidence intervals based on five runs. Table 6.28 
summarizes these numbers. 

reallocating buffers from one block to another, and time spent initiating heuristic reada- 

head. To facilitate comparison between the overhead of heuristic readahead and of 

informed prefetching, the time TIP spends initiating informed prefetches is also reported 

in other. However, the time TIP spends calculating cost and benefit estimates to determine 

whether it should prefetch is included in the TIP category which includes all activities that 

are unique to the TIP system. Thus, TIP includes all cost and benefit calculations, profil- 

ing the LRU cache, running the min-max algorithm to pick pages for replacement, and 

tracking blocks in the cache of hinted blocks. 

Table 6.28 summarizes the file-system results for all of the benchmarks. The total file- 

system time is the geometric mean of the ratios between TIP, no hints or TIP and the base 

UNIX system. For the four file-system components, I wanted one set of numbers that 

would simultaneously give a feel for both the component-by-component relative perfor- 

mance of the systems, and the portion of total time that each system spends in each com- 

ponent. Thus, for each component, I report the arithmetic average percentage of file- 

system time it represents, scaled by the previously computed ratio for the total file-system 
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system 
file system 

total copy I/O TIP other 

Digital UNIX 1.000 0.33 0.39 0.00 0.28 

TIP, no hints 1.135 0.33 0.40 0.11 0.30 

TIP 1.089 0.33 0.25 0.24 0.27 

Table 6.28. File system CPU overhead summary. This table shows the geometric average ratio of time 
spent in the TIP file system with and without hints relative to the base UNIX system. For the four 
components, this ratio is multiplied by the average fraction of filesytem time each represents (see text for 
further explanation). Overall, TIP adds a 13.5% CPU overhead to the file system when not given hints. 
When hints are available, TIP I/O and caching optimizations partially offset TIP overhead and reduce the net 
overhead to 8.9%. 

times. For example, to compute the relative time TIP, no hints spends in I/O, I first com- 

pute the arithmetic average of the percentages of time TIP, no hints spends in I/O in each 

of the benchmarks, 

17.8% + 41.6% + 24.8% + 51.8% + 40.2% + 36.6% + 33.2% = 0.35, 

and then scale this by the total time spent in TIP, no hints, 

0.35x1.135 = 0.40.4 

The summary in Table 6.28 shows that when the applications do not give hints, TIP 

adds an average overhead of 13.5% to the file system, most of which is spent in the TIP 

category. When the applications do give hints, TIP's overall overhead drops to 8.9% even 

though the time spent in TIP functions doubles. Several factors contribute to this drop. 

First, TIP's I/O optimizations reduce the time spent on I/O by an average of over 35%. 

Applications such as Davidson, which benefit from informed caching, spend less time on 

I/O because they read fewer blocks from disk when they give hints. Others, such as 

XDataSlice, read fewer blocks because informed prefetching reduces false readahead. 

I like this approach better than two possible alternatives. One would have been to report ratios for 
each component just as I do for the total. Unfortunately, the ratio is not defined for the TIP component which 
has the value 0.00 for the base Digital UNIX system. Another alternative would have been to compute the 
geometric average of the percentages of time spent in each component. But, I prefer the arithmetic averages 
because they sum to 100% for each system whereas the geometric averages do not. Using the arithmetic 
average is equivalent to implicitly weighting equally each benchmark's contribution to overall system per- 
formance and taking the total time to run all benchmarks as the metric of interest. In this case, the total file- 
system time and the total time spent in each component would be meaningful numbers in and of themselves 
and then, according to Jain [Jain91, p. 190], the arithmetic average, and not the geometric average, would be 
the best estimate of the portion of time spent in each component. So, reporting the arithmetic average is not 
unreasonable. Moreover, scaling the arithmetic averages by the ratios for the total file-system time allows 
both component-by-component comparison and comparison among the components for each system. 
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Finally, other applications, such as Postgres, benefit from informed clustering of multiple 

reads into one disk access. An understanding of where time is spent in TIP, and how giv- 

ing hints reduces other file-system overhead by nearly 10% requires further analysis. 

Table 6.29 breaks time in the TIP column of Table 6.27 into five categories and Table 

6.30 uses the same approach as Table 6.28 to summarize the results except that TIP, no 

hints is used as the base. Hint bookkeeping includes the time to give hints, resolve names 

of hinted files into a file handle, and build the internal data structures that represent the 

hints in the cache manager. It also includes a check on every read for a matching hint. This 

is why there is non-zero hint bookkeeping even when applications don't give hints. LRU 

profiling is the time spent recording where in the LRU queue cache hits occur. The LRU 

estimator uses this information to generate its estimate of the cost of shrinking the LRU 

queue. Because the LRU annex was created to enable efficient profiling of the LRU 

queue, time spent moving buffers to and from the annex is included here. LRU profiling 

represents by far the largest portion of TIP overhead without hints. Hinted-block tracking 

refers to the time spent by hint estimators updating their data structures when they begin 

or end 'tracking' a block as part of the min-max algorithm described in Section 4.3.5. The 

current implementation's use of a simple insertion sort when it starts tracking a block 

appears not to add too much overhead in most cases. Hint cost/benefit estimates is the time 

spent simply computing cost and benefit estimates for prefetching or hinted caching 

whenever the min-max algorithm needs one to make allocation decisions. The overhead 

here is substantial because of the relatively slow divide operations. Reimplementing these 

cost calculations as a table lookup, at least within the prefetch horizon, could probably 

reduce this time substantially. Finally, pick, query, update is the core of the min-max algo- 

rithm. It includes the time spent picking the least valuable buffer, updating the new value 

of the estimator that gave up the buffer (except the actual cost estimate), querying other 

interested estimators, and updating the cost for an estimator that starts tracking the picked 

block. It also includes benefit updates when an application consumes a hinted block or 

when the prefetcher issues a new prefetch. 

When the system is running without hints, two-thirds of the time is spent profiling the 

LRU queue. To reduce this overhead, it would certainly be possible to dynamically size 

the LRU-queue segments to use larger ones during periods when the system had few hints 
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benchmark system 

TIP 

total 
hint book- 
keeping 

LRU 
profiling 

hinted- 
block 

tracking 

hint 
cost/benefit 

estimates 

pick, query, 
update 

Davidson 

TIP, 
no hints 

4.39 
(0.09) 

100.0% 

0.04 
(0.00) 
0.8% 

3.16 
(0.09) 
71.9% 

0.00 
(0.00) 
0.0% 

0.00 
(0.00) 
0.0% 

1.20 
(0.03) 
27.3% 

TIP 
7.60 

(0.04) 
100.0% 

0.76 
(0.01) 
10.0% 

2.29 
(0.02) 
30.1% 

0.65 
(0.01) 
8.6% 

1.16 
(0.02) 
15.2% 

2.74 
(0.03) 
36.1% 

XDataSlice 

TIP, 
no hints 

2.72 
(0.02) 

100.0% 

0.06 
(0.01) 
2.2% 

1.73 
(0.00) 
63.6% 

0.00 
(0.00) 
0.0% 

0.00 
(0.00) 
0.0% 

0.93 
(0.00) 
34.1% 

TIP 
3.76 

(0.02) 
100.0% 

0.70 
(0.00) 
18.7% 

1.05 
(0.01) 

28.0% 

0.24 
(0.01) 
6.4% 

0.61 
(0.01) 
16.2% 

1.15 
(0.02) 
30.7% 

Sphinx 

TIP, 
no hints 

1.33 
(0.01) 

100.0% 

0.07 
(0.00) 
5.2% 

0.91 
(0.01) 
68.2% 

0.00 
(0.00) 
0.0% 

0.00 
(0.00) 
0.0% 

0.35 
(0.01) 
26.6% 

TIP 
3.21 

(0.03) 
100.0% 

0.79 
(0.01) 

24.7% 

0.76 
(0.01) 

23.7% 

0.06 
(0.00) 
1.8% 

0.61 
(0.01) 
19.1% 

0.99 
(0.03) 
30.7% 

Agrep 

TIP, 
no hints 

0.09 
(0.00) 

100.0% 

0.01 
(0.00) 
6.2% 

0.06 
(0.00) 
64.5% 

0.00 
(0.00) 
0.0% 

0.00 
(0.00) 
0.0% 

0.03 
(0.00) 
29.1% 

TIP 
0.34 

(0.00) 
100.0% 

0.17 
(0.00) 
50.1% 

0.05 
(0.00) 
16.1% 

0.01 
(0.00) 
2.1% 

0.04 
(0.00) 
11.3% 

0.07 
(0.00) 

20.5% 

Gnuld 

TIP, 
no hints 

0.55 
(0.01) 

100.0% 

0.02 
(0.00) 
3.1% 

0.37 
(0.01) 
67.6% 

0.00 
(0.00) 
0.0% 

0.00 
(0.00) 
0.0% 

0.16 
(0.01) 

29.4% 

TIP 
1.31 

(0.02) 
100.0% 

0.49 
(0.01) 
37.3% 

0.31 
(0.00) 
23.4% 

0.06 
(0.01) 
4.9% 

0.16 
(0.00) 
11.9% 

0.30 
(0.01) 
22.6% 

Postgres 
20% match 

TIP, 
no hints 

0.27 
(0.01) 

100.0% 

0.01 
(0.00) 
4.1% 

0.20 
(0.01) 
72.4% 

0.00 
(0.00) 
0.0% 

0.00 
(0.00) 
0.0% 

0.06 
(0.00) 
23.5% 

TIP 
0.51 

(0.02) 
100.0% 

0.07 
(0.00) 
13.6% 

0.20 
(0.01) 
39.4% 

0.03 
(0.00) 
6.2% 

0.07 
(0.01) 
13.9% 

0.14 
(0.01) 
26.8% 

Postgres 
80% match 

TIP, 
no hints 

1.02 
(0.04) 

100.0% 

0.09 
(0.00) 
9.0% 

0.71 
(0.04) 
69.5% 

0.00 
(0.00) 
0.0% 

0.00 
(0.00) 
0.0% 

0.22 
(0.01) 
21.5% 

TIP 
2.16 

(0.07) 
100.0% 

0.38 
(0.06) 
17.8% 

0.61 
(0.01) 

28.2% 

0.42 
(0.03) 
19.4% 

0.29 
(0.01) 
13.5% 

0.46 
(0.02) 

21.1% 

Table 6.29. TIP CPU overhead. This table breaks the time spent in TIP in Table 6.27 into five categories. 
Hint bookkeeping includes storing hints and checking whether accesses match hints which occurs even when 
an application does not hint. LRU profiling is time spent estimating the hit ratio as a function of LRU queue 
length and represents by far the largest share of TIP overhead in the absence of hints. Hinted block tracking 
is the cost of tracking blocks in the hinted cache. Hint cost/benefit estimates is the cost of computing cost 
and benefit estimates. Pick, query, update is the core of the min-max buffer allocation algorithm. The 
numbers in parentheses are the 95% confidence intervals. The percentages are of total TIP time. 
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system 

TIP 

total 
hint book- 
keeping 

LRU 
profiling 

hinted- 
block 

tracking 

hint 
cost/benefit 

estimates 

pick, query, 
update 

TIP, no hints 

TIP 

1.000 

2.130 

0.04 

0.52 

0.68 

0.57 

0.00 

0.15 

0.00 

0.31 

0.27 

0.57 

Table 6.30. TIP CPU overhead summary. This table shows the geometric average ratio between the total 
times spent in TIP with and without hints. For the five TIP components, this ratio is multiplied by the 
average fraction of time spent in each component. Without hints, about two-thirds of TIP overhead is 
profiling the LRU queue. With hints, LRU profiling overhead drops slightly because, for example, false 
readaheads no longer go through the queue, but all other overheads increase which doubles overall TIP CPU 
overhead. 

and therefore little need for precise profiling of the queue. Then, when hints did arrive, the 

segments could be shrunk to gain a more precise estimation of the value of LRU-queue 

buffers. A more radical solution would be to change the way LRU cost estimates are gen- 

erated. In Chapter 7,1 suggest a possible alternative. 

To explore the effect giving hints has on the other parts of the file system (from Table 

6.27), Table 6.31 details how time is spent within this category and Table 6.32 summa- 

rizes the results in the usual way. The tables show the time spent in the different layers of 

code traversed by a read request as it goes through the system. At the highest level, system 

call to copyout loop includes the time from the invocation of a read or write system call 

down through the VFS layer to the copyout loop in the UFS layer. The copyout loop 

includes three main steps: get a buffer, copy its contents to/from user space, and release 

the buffer. The time to actually copy the data was separately accounted for in Table 6.27. 

The other two steps are accounted for in this table by get data buffer and release hold on 

buffer. 

Get data buffer includes the time to call the cache manager with a request for a block 

and if the requested block is not cached, to allocate a new buffer and initiate a disk access. 

Recall that the time to actually perform the I/O was separately accounted for in Table 

6.27. The time to do the cache lookup is cache lookup. When the TIP system has hints, 

this lookup step is avoided because the block is found directly from the hint (see Section 

5.1 for details). This is why the lookup time for the TIP system is so much lower than for 

Digital UNIX and TIP, no hints. If the buffer is not cached and a buffer must be allocated, 

then the time to allocate a new buffer and reassign it from the old to the new block is allo- 

cate buffer. Note that allocate buffer does not include the time to run the TIP allocation 
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benchmark system 

other 

total 

system 
call to 

copyout 
loop 

get data 
buffer 

cache 
lookup 

allocate 
buffer 

cluster 
I/O 

requests 

release 
hold on 
buffer 

build 
prefetch 
requests 

Davidson 

Digital 
UNIX 

6.07 
(0.08) 

100.0% 

0.97 
(0.07) 
15.9% 

1.09 
(0.04) 
17.9% 

0.73 
(0.01) 
12.0% 

1.53 
(0.04) 
25.3% 

0.48 
(0.00) 
7.9% 

0.61 
(0.01) 
10.1% 

0.65 
(0.01) 
10.7% 

TIP, 
no hints 

6.57 
(0.08) 

100.0% 

1.00 
(0.04) 
15.2% 

1.21 
(0.02) 
18.5% 

0.99 
(0.05) 
15.1% 

1.61 
(0.01) 
24.5% 

0.63 
(0.01) 
9.6% 

0.52 
(0.01) 
7.9% 

0.61 
(0.02) 
9.3% 

TIP 
4.26 

(0.05) 
100.0% 

1.00 
(0.01) 
23.5% 

1.50 
(0.01) 
35.2% 

0.01 
(0.00) 
0.3% 

0.36 
(0.01) 
8.5% 

0.35 
(0.00) 
8.3% 

0.37 
(0.01) 
8.7% 

0.66 
(0.03) 
15.4% 

XDataSlice 

Digital 
UNIX 

5.89 
(0.05) 

100.0% 

1.11 
(0.01) 
18.9% 

1.35 
(0.02) 
22.9% 

0.42 
(0.01) 
7.2% 

1.24 
(0.01) 
21.1% 

0.39 
(0.00) 
6.7% 

0.41 
(0.00) 
7.0% 

0.94 
(0.01) 
15.9% 

TIP, 
no hints 

6.15 
(0.12) 

100.0% 

1.33 
(0.03) 
21.6% 

1.42 
(0.04) 
23.0% 

0.48 
(0.00) 
7.8% 

1.24 
(0.04) 
20.1% 

0.45 
(0.01) 
7.4% 

0.36 
(0.00) 
5.8% 

0.87 
(0.01) 
14.2% 

TIP 
4.48 

(0.02) 
100.0% 

1.43 
(0.01) 

31.9% 

0.99 
(0.01) 
22.2% 

0.01 
(0.00) 
0.3% 

0.35 
(0.01) 
7.9% 

0.33 
(0.01) 
7.4% 

0.32 
(0.00) 
7.1% 

1.04 
(0.01) 

23.1% 

Sphinx 

Digital 
UNIX 

3.92 
(0.03) 

100.0% 

1.51 
(0.02) 
38.5% 

0.94 
(0.02) 
23.9% 

0.34 
(0.02) 
8.8% 

0.47 
(0.01) 
11.9% 

0.13 
(0.00) 
3.2% 

0.30 
(0.00) 
7.7% 

0.23 
(0.00) 
6.0% 

TIP, 
no hints 

4.62 
(0.28) 

100.0% 

1.84 
(0.12) 
39.9% 

1.11 
(0.01) 
24.0% 

0.45 
(0.02) 
9.7% 

0.44 
(0.01) 
9.4% 

0.17 
(0.00) 
3.8% 

0.37 
(0.16) 
8.0% 

0.23 
(0.00) 
5.1% 

TIP 
4.75 

(0.03) 
100.0% 

1.72 
(0.02) 
36.3% 

1.52 
(0.05) 

31.9% 

0.03 
(0.00) 
0.5% 

0.21 
(0.00) 
4.4% 

0.19 
(0.00) 
4.0% 

0.27 
(0.00) 
5.6% 

0.82 
(0.01) 
17.2% 

Agrep 

Digital 
UNIX 

0.31 
(0.03) 

100.0% 

0.10 
(0.01) 

33.4% 

0.06 
(0.01) 
19.9% 

0.02 
(0.01) 
7.1% 

0.07 
(0.01) 
23.1% 

0.01 
(0.00) 
3.8% 

0.02 
(0.00) 
6.7% 

0.02 
(0.00) 
5.6% 

TIP, 
no hints 

0.30 
(0.01) 

100.0% 

0.12 
(0.00) 

38.7% 

0.07 
(0.00) 
22.5% 

0.03 
(0.01) 
8.4% 

0.05 
(0.00) 
15.5% 

0.01 
(0.00) 
4.2% 

0.02 
(0.00) 
5.8% 

0.02 
(0.00) 
5.1% 

TIP 
0.31 

(0.01) 
100.0% 

0.11 
(0.00) 
36.2% 

0.07 
(0.00) 
22.8% 

0.00 
(0.00) 
0.3% 

0.03 
(0.00) 
9.2% 

0.02 
(0.00) 
6.4% 

0.02 
(0.00) 
5.4% 

0.06 
(0.01) 

20.0% 

Gnuld 

Digital 
UNIX 

1.55 
(0.04) 

100.0% 

0.41 
(0.01) 
26.5% 

0.52 
(0.01) 
33.5% 

0.12 
(0.00) 
7.7% 

0.25 
(0.01) 
16.1% 

0.05 
(0.00) 
3.3% 

0.12 
(0.00) 
7.5% 

0.07 
(0.01) 
4.8% 

TIP, 
no hints 

1.64 
(0.02) 

100.0% 

0.48 
(0.01) 

29.3% 

0.55 
(0.01) 
33.3% 

0.15 
(0.00) 
9.3% 

0.22 
(0.01) 
13.2% 

0.07 
(0.00) 
4.1% 

0.10 
(0.00) 
6.0% 

0.07 
(0.01) 
4.4% 

TIP 
1.61 

(0.05) 
100.0% 

0.47 
(0.01) 
29.0% 

0.55 
(0.01) 
34.1% 

0.04 
(0.00) 
2.4% 

0.12 
(0.00) 
7.3% 

0.09 
(0.01) 
5.4% 

0.09 
(0.00) 
5.6% 

0.25 
(0.01) 
15.8% 

Table 6.31. CPU overhead of the other part of the file system. This table shows how time is spent in the 
other category of file-system time in Table 6.27 for each of the benchmarks. The numbers in parentheses are 
the 95% confidence intervals and percentages are of total overtime. Table 6.32 summarizes these data. 
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benchmark system 

other 

total 

system 
call to 

copyout 
loop 

get data 
buffer 

cache 
lookup 

allocate 
buffer 

cluster 
I/O 

requests 

release 
hold on 
buffer 

build 
prefetch 
requests 

Postgres, 
20% match 

Digital 
UNIX 

0.81 
(0.03) 

100.0% 

0.23 
(0.01) 

29.1% 

0.28 
(0.01) 
35.2% 

0.06 
(0.02) 
7.3% 

0.13 
(0.01) 
15.9% 

0.02 
(0.00) 
2.4% 

0.05 
(0.00) 
5.8% 

0.03 
(0.00) 
3.7% 

TIP, 
no hints 

0.84 
(0.02) 

100.0% 

0.28 
(0.01) 

33.2% 

0.32 
(0.01) 
38.5% 

0.05 
(0.00) 
6.5% 

0.09 
(0.00) 
10.4% 

0.02 
(0.00) 
2.4% 

0.04 
(0.01) 
5.2% 

0.03 
(0.00) 
3.1% 

TIP 
0.88 

(0.02) 
100.0% 

0.27 
(0.01) 

30.6% 

0.25 
(0.01) 
29.0% 

0.03 
(0.00) 
3.9% 

0.06 
(0.00) 
6.9% 

0.05 
(0.01) 
5.1% 

0.05 
(0.00) 
5.2% 

0.16 
(0.00) 
18.7% 

Postgres, 
80% match 

Digital 
UNIX 

2.45 
(0.04) 

100.0% 

0.83 
(0.03) 
34.1% 

0.93 
(0.03) 
38.1% 

0.15 
(0.00) 
6.1% 

0.31 
(0.01) 
12.7% 

0.04 
(0.00) 
1.7% 

0.14 
(0.00) 
5.7% 

0.03 
(0.00) 
1.3% 

TIP, 
no hints 

2.79 
(0.13) 

100.0% 

1.08 
(0.06) 
38.6% 

1.08 
(0.08) 

38.7% 

0.18 
(0.01) 
6.5% 

0.24 
(0.01) 
8.7% 

0.04 
(0.00) 
1.5% 

0.13 
(0.01) 
4.6% 

0.03 
(0.00) 
1.2% 

TIP 
2.72 

(0.07) 
100.0% 

0.97 
(0.04) 
35.5% 

0.82 
(0.04) 

30.2% 

0.11 
(0.01) 
4.1% 

0.15 
(0.02) 
5.4% 

0.11 
(0.01) 
4.1% 

0.16 
(0.04) 
5.7% 

0.40 
(0.01) 
14.7% 

Table 6.31. CPU overhead of the other part of the file system. This table shows how time is spent in the 
other category of file-system time in Table 6.27 for each of the benchmarks. The numbers in parentheses are 
the 95% confidence intervals and percentages are of total other time. Table 6.32 summarizes these data. 

system 

other 

total 

system 
call to 

copyout 
loop 

get data 
buffer 

cache 
lookup 

allocate 
buffer 

cluster 
I/O 

requests 

release 
hold on 
buffer 

build 
prefetch 
requests 

Digital UNIX 

TIP, no hints 

TIP 

1.000 

1.072 

0.973 

0.28 

0.33 

0.31 

0.27 

0.30 

0.29 

0.08 

0.10 

0.02 

0.18 

0.16 

0.07 

0.04 

0.05 

0.06 

0.07 

0.07 

0.06 

0.07 

0.06 

0.17 

Table 6.32. Summary of the CPU overhead of the other part of the file system. Performance in this part 
of the file system is comparable in the TIP and base UNIX systems when there are no hints. With hints, the 
TIP optimizations lead to a net reduction of 10% in the overhead of the other component of the file system. 

algorithm which is accounted for by the pick, query, update component of Table 6.29. 

Before an I/O to fill the buffer is initiated, the system attempts to cluster requests for con- 

tiguous blocks into one access which takes time cluster I/O requests. Once the hi-level 

copyout loop copies the data, the buffer is released back to the cache in time release hold 

on buffer. After the system services read hits or misses, it executes the readahead heuristic 

for unhinted accesses or checks the hint lists for something to prefetch which takes time 

build prefetch requests. 
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As the summary data in Table 6.32 show, the TIP and base UNIX system are compara- 

ble except that when TIP has hints, it can reduce the cache lookups and allocate buffers 

components which more than offsets the increase in the build prefetch requests compo- 

nent. The net effect is about a 10% reduction in the overhead for the other part of the file 

system. Because other accounts for 25-30% of total file-system overhead, the overall 

reduction in file-system overhead is 2.5-3.0%. 

6.6.3 Memory overhead 

The TIP system consumes some memory for the data structures that keep track of the 

buffers, store hints, and link hints to buffers as hints are resolved. 

Even when there are no hints, TIP allocates a tipBuf structure (see Figure 5.8) for each 

cache page which supports functions such as profiling the LRU queue. The structure con- 

sumes 104 bytes per page which amounts to a 1.2% overhead. 

When an application issues a hint, TIP allocates one 568-byte tipHnt structure plus 

one 24-byte tipSeg for each hinted segment or sequential byte range (see Section 3.2). The 

amount of data actually consumed by hint structures is very much application-dependent. 

As Table 3.3 showed, there may from one to thousands of segments per hint and from one 

to thousands of blocks per segment. The aggregate memory consumed can be substantial. 

The Postgres (80% match) benchmark issues a hint with 15916 segments which occupies 

a total of almost 47 pages of memory. For the system to support truly vast numbers of 

hints, it may become necessary to store distant hints on disk. 

Of more concern might be the tipHnt structure if many applications give separate hints 

for very small amounts of data. If this becomes a problem, then some simple optimizations 

could significantly reduce the size of the tipHnt structure. Of the 568 bytes in the struc- 

ture, 456 are devoted to recording permissions data to aid name resolution. This data could 

be stored per-process instead of per-hint to eliminate 80% of this overhead. It was not a 

problem in our experiments, so this data was stored with the hint for convenience. 

The final major memory overhead comes when the hints are resolved. There is one 64- 

byte tipNex structure for each resolved block.5 And, if the hinted block is not either 

5 It would be possible to dispense with the separate tracking and prefetching links, have one list for 
the whole access sequence, and rely on a flag to indicate that the buffer was being tracked. This would save 
24 bytes per nexus, but would add CPU overhead for sequentially searching the list for tracked blocks. 
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already resident, an LRU ghost buffer, or the target of a resolved hint, the system allocates 

a tipBuf structure for the block. In the worst case, where all hints are for unique, uncached 

blocks, this amounts to an overhead of 64+104=168 bytes per resolved block. How many 

such structures are simultaneously allocated is application dependent. Certainly there are 

no more of them than there are outstanding hints, and most of the benchmarks only issue a 

portion of their hints at a time. But, Postgres, for example, issues many hints simulta- 

neously. In this case, the caching horizon, described in Section 5.3.1, limits how much 

memory may be devoted to any single hint stream to at most 10,000 blocks and usually 

less. At 10,000 resolved blocks, the tipNex and tipBuf structures could consume as much 

as 205 pages which is the largest single potential overhead. 

A substantial portion of the TIP data structures are memory pointers which on the Dig- 

ital Alpha CPU are 8 bytes in size. A 32-bit architecture would suffer half the overhead for 

these pointers which would reduce a tipBuf from 104 to 60 bytes and a tipNex from 64 to 

36 bytes. This would reduce the worst-case 205 pages of resolved-hint overhead to 117 

pages. 

These data structures occupy the space they do because they explicitly and exhaus- 

tively enumerate the outstanding, resolved hints. An interesting area of future work would 

be to develop more compact representations of hints that yet could support the required 

pick, query, and bid functions without adding too much CPU overhead. 

6.7 Conclusion 

The experimental results presented in this chapter support three primary conclusions: 

1. many I/O-intensive applications do not benefit from a disk array; 

2. informed prefetching's greatest gains come from prefetching in parallel; and 

3. informed caching and the disk optimizations deliver their greatest gains on small 

arrays. 

Together, informed prefetching and caching are hugely successful at reducing application 

elapsed time on any array size. 

On a single disk, TIP reduces elapsed time for the suite of application benchmarks by 

7% to 50% or an average of 28%. When multiprogramming two applications on a single 
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disk, TIP's informed resource management is even more beneficial, reducing elapsed time 

for the pair of applications by 26% to 48% or an average of 37% when both applications 

give hints. When it can exploit the parallelism of a ten-disk array for parallel prefetching, 

TIP reduces elapsed time by 17% to 84% or an average of 64%. Because multiprogram- 

ming on a ten-disk array increases both CPU and array utilization even without hints, 

there is less opportunity for TIP to improve performance. Nevertheless, TIP reduces 

elapsed time for a pair of applications running on a ten-disk array by 15% to 73% or an 

average of 58% when both applications give hints. 

A combination of optimizations is responsible for producing these overall results. 

Among these, the experiments showed that informed prefetching, which takes advantage 

of hints within the prefetch horizon, reduces elapsed time by up to 28% or an average of 

17% on one disk and by up to 84% or an average of 63% on a ten-disk array. The experi- 

ments measuring stall time as a function of prefetch depth clearly show that when the 

bandwidth of a disk array is available, not even a full prefetch horizon worth of outstand- 

ing hints is required to deliver huge performance gains. Programmers and researchers into 

techniques for automatic hint generation can be confident that disclosing even a limited 

number of accesses at a time can still lead to large performance gains. 

When hints disclose many accesses in advance, they can be used for informed caching 

and clustering. Compared to prefetching alone, these techniques together reduced elapsed 

time for individual applications by up to an additional 36% or an average of 13% on a sin- 

gle disk. On large arrays, informed caching and clustering reduced elapsed time by up to 

8% or an average of 3%. These gains are less dramatic because, as the bandwidth of the 

storage subsystem increases with larger array size, informed prefetching virtually elimi- 

nates stalls for hinted accesses. The only opportunity for informed caching to further 

improve performance is to reduce the number of accesses and therefore the CPU overhead 

of performing I/O. Managing the cache well and maximizing disk performance is most 

important when cache and disk resources are in short supply. Thus, TIP's informed cach- 

ing and clustering see their greatest gains on a single disk. 

In practice, most of the single-disk informed caching and clustering gains were real- 

ized for just two applications, Davidson and Postgres, 80% match, although Gnuld also 

benefitted to a lesser degree. All of these applications were able to disclose a significant 



190 CHAPTER 6 

amount of reuse many accesses in advance. Other applications, such as Agrep and 

XDataSlice reaccess little data. Still others, such as Sphinx, either reuse blocks immedi- 

ately, for which LRU caching is effective, or don't give enough hints to capture widely- 

separated reuse. In particular, applications that access their files in ascending order on any 

single pass, even if not fully sequential because of strides, gain little from informed cach- 

ing and clustering if they don't disclose hints about multiple passes over the data. 

Informed caching and clustering can only help workloads that provide both caching and 

clustering opportunities and hints that span these opportunities. 

With regard specifically to optimizing the performance of individual disks, these 

experiments showed that informed prefetching's longer disk queues can reduce disk ser- 

vice time by up to 24% and informed clustering can reduce per-block service time by up to 

22% on a single disk. On larger arrays, the impact of these gains can be small because, as 

noted above in the case of informed caching and clustering, informed prefetching masks 

stalls for hinted accesses. But, the impact of disk scheduling is further reduced on larger 

arrays because prefetches are spread over a larger number of disks resulting in a shorter 

queue at each drive. Shorter queues mean smaller reductions in disk service time from 

scheduling. 

Informed prefetching, caching, clustering, and disk scheduling all require cache buff- 

ers to improve performance. The original goal in developing the framework for resource 

management based on cost-benefit analysis was to find a way to balance the use of cache 

buffers to take advantage of all of these optimizations. The results presented in this chap- 

ter show that cost-benefit analysis is indeed an effective mechanism for allocating cache 

buffers. With regard to informed prefetching, the experiments measuring stall as a func- 

tion of prefetch depth show that the upper-bound prefetch horizon captures most of the 

potential stall reduction from both prefetching and disk scheduling without significantly 

cutting into cache performance, at least for a single application. Further, in the single- 

application experiments, informed caching and clustering always increase the number of 

reuse hits, reduce the number of blocks fetched from disk, and reduce the number of I/Os 

needed to fetch the blocks. Significantly, in no experiment, single-application or multipro- 

gramming, did TIP's application of these resource-demanding optimizations reduce per- 

formance. Never was prefetching so deep that losses in cache effectiveness offset 
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prefetching gains. Never was informed caching so aggressive that reductions in LRU 

cache effectiveness for unhinted accesses more than offset its gains. Never did informed 

clustering reduce cache effectiveness enough to lead to an increase disk service time. On 

the contrary, TIP consistently achieved its stated goal of reducing application elapsed time 

in the single-application case and improving throughput in the multiprogramming case. 

TIP's cost-benefit buffer allocation effectively balanced the use of buffers for the several 

optimizations. 

The cost-benefit estimations do not consider the overhead of the TIP implementation. 

But, any serious evaluation must. The overheads measured are noticeable, but the overall 

performance of the TIP system without hints is comparable to the standard Digital UNIX 

system. And, when TIP has hints, the performance gains in all the experiments presented 

here more than offset the losses due to these overheads. Still, there is room for improve- 

ment. The single largest CPU overhead in the TIP system is for LRU profiling. Thus, 

innovations in the algorithms for estimating the cost of shrinking the LRU queue offer the 

greatest opportunity for CPU overhead reduction. Finding more compact representations 

for hints that do not add significantly to CPU overhead offer the greatest opportunity for 

reducing the memory overhead of the system. 

This performance evaluation of TIP shows that a system can take advantage of appli- 

cation disclosure of future accesses for prefetching, caching, clustering, and disk schedul- 

ing and dramatically reduce the elapsed time required to run a broad range of important 

I/O-intensive applications. Further, it shows that a system based on cost-benefit analysis 

can effectively manage cache resources to obtain substantial performance gains from all 

four of these optimizations. 
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Chapter 7 

Generalizing the Results and Future 
Work 

The experiments presented in Chapter 6 clearly demonstrated the utility of application 

disclosure of future accesses and the effectiveness resource management based on cost- 

benefit analysis. And yet, the experiments raised or left open a number of questions. In 

this chapter, I will explore some of these in more depth. Where possible, I will provide 

answers, or point to work that provides answers. But, in many cases, answers are unknown 

and I raise the questions here only to point to them as areas for future work. 

In Section 7.1,1 take up the question of why TIP performs well on a single, congested 

disk even though the prefetching benefit estimate is based on the assumption of no disk 

congestion. To answer this question, I develop a performance model that takes the number 

of disks into account. The model assumes a workload that is evenly balanced across the 

array and it neglects the effects of disk scheduling. But, through experiments with a syn- 

thetic application, I show that the model is useful for understanding TIP's performance on 

smaller arrays. 

Next, in Section 7.2,1 take up the question of what happens when, over time, proces- 

sors get faster and the prefetch horizon grows to hundreds or thousands of accesses? Will 

the upper-bound prefetch horizon, P, still be useful? I find that some of the simplifications 

of the current implementation may no longer be useful, and that finite bandwidth and the 
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effects of disk scheduling may have to be accounted for explicitly to guarantee robustness. 

But, I argue that the fundamental framework is sound. 

In Section 7.3,1 discuss other recent work in this area and describe its relationship to 

this work. Specifically, in Section 7.3.1, I describe work that has shown that when 

prefetching to a fixed depth, runs of cached blocks or an unbalanced disk load can cause a 

disk to go idle. This work has shown that when, in the long term, the bandwidth of the 

storage subsystem is the performance bottleneck, these periods of disk idleness should be 

exploited for deeper prefetching. The result is a prefetching algorithm, forestall, that 

prefetches to a fixed depth when the disks are busy or when they are not the long-term bot- 

tleneck, but prefetches more deeply to take advantage of idleness when the disks are the 

bottleneck. The considerations in Section 7.2 apply to the near-term, fixed depth prefetch- 

ing, but the deep prefetching usefully extends that work. 

Then, in Section 7.3.2, I describe the results of a recent collaboration with Andrew 

Tomkins that showed how to incorporate the deep prefetching lessons of forestall into 

TIP's cost-benefit framework. The resulting system, TIPTOE, not only performs deep 

prefetching when appropriate to take advantage of disk idleness, but also incorporates the 

fact that a disk is a bottleneck into its estimate for the cost of ejecting a hinted block from 

that disk. A simulation study compares the performance of the cost-benefit approach to 

buffer allocation to an alternative based on the LRU algorithm. 

Both forestall and TIPTOE rely on detailed knowledge of the layout of data on an 

array. In Section 7.3.3,1 briefly discuss how to adapt TIPTOE to a world where data lay- 

out is unknown. I conclude that TIPTOE could be much more effective if disk array inter- 

faces included a few minimum features. 

Finally, in Section 7.4,1 describe a number of areas of future work. These range from 

specific TIP implementation issues to broad areas of systems research that would help 

expand the usefulness of the informed prefetching and caching approach. 

7.1 The impact of the no-congestion assumption 

The performance model which served as the basis for the cost and benefit estimates 

developed in Chapter 4 makes certain simplifying assumptions. One of these is that there 

is never any disk congestion; that is, that disk requests never suffer any queuing delays 
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access 
number 

time (1 time-step = Tapp + Thit + Tdriver) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 I Q G Q G K 
2 I - - - - c X 
3 I - - - - c X 
4 I - - G G K 
5 I - - - - K 
6 I - - - - K 
7 I - - G G K 
8 I - - - - & 
9 I - - - - K 

10 I - - G Q & 
I: initiate prefetch     -: prefetch in progress    C : block arrives in cache     X: consume block     O: stall 

Figure 7.1. Average stall time when prefetching in parallel. This figure illustrates informed prefetching as 
a pipeline. In this example, three buffers are used to prefetch three blocks concurrently and Tapp is assumed 
fixed. At time T=0, the application gives hints for all its accesses and then requests the first block. Prefetches 
for the first three accesses are initiated immediately. The first access stalls until the prefetch completes at 
T=5, at which point the data is consumed and the prefetch of the forth block begins. Accesses two and three 
proceed without stalls because the latency of prefetches for those accesses is overlapped with the latency of 
the first prefetch. But, the fourth access stalls for Tstall = Tdisk - 3(Tapp+Thit+Tdriver). The next two accesses 
don't stall, but the seventh does. The application settles into a pattern of stalling every third access. 

(see Section 4.2.1). Clearly, this assumption is often violated, even in the experiments pre- 

sented in Chapter 6. In this section, I will address the questions of what is the impact of 

this assumption, and why does the system perform so well even when the assumption is 

grossly violated? 

7.1.1 The ideal model 

Recall from Section 4.2.3 that the change in I/O service time that results from using 

one buffer to prefetch x instead of x-1 accesses in advance is given by Equation 4.9 which 

I repeat here: 

ATpf(x) = T stallK W-Tstad*-»  • (7.1) 

Thus, the key problem is finding an expression for stall as a function of prefetch depth. I 

used a pipeline model for the servicing of prefetch requests which is first described in Fig- 

ure 4.4 and is repeated here in Figure 7.1 to arrive at the following expression for stall 

time (Equation 4.12), 
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T        (   \  —     disk ~   ^   app        hit        driver' .„ ox 
1 stall*-*> Z  \'-Z) 

T disk 
~ V'app + T'hit +J'driver^   • (7-3) 

The key parameter that determines the behavior of the pipeline in Figure 7.1 is the number 

of prefetches that are serviced in parallel. Under the no-congestion assumption, all JC of the 

prefetches are serviced in parallel which leads to the appearance of x in the denominator of 

Equation 7.3. But, if there are fewer than x disks, then it is impossible for all x prefetches 

to proceed in parallel, and the no-congestion assumption no longer holds. 

Suppose there are d disks. At very large prefetching depths, JC » d, the number of disks 

in the array ultimately limits prefetching parallelism. On the other hand, when the 

prefetching depth is smaller than the array size, x < d, prefetching depth limits parallel- 

ism. It is clear, then, that the prefetching parallelism, p, can never be more than the mini- 

mum of the prefetching depth and the array size, d, and we have 

p < min{x, d} . (7.4) 

In the ideal case, requests are perfectly balanced over the array and this expression can 

be rewritten as an equality. Taking the next step, we can use this ideal expression for the 

prefetching parallelism to rewrite Equation 7.3 in terms of prefetching depth and array 

size 

x = °     Tdisk 
T«ad** d) = \ T . (7.5) 

^->j aiSK ,j, rp rp , 

min{x,d} aPP       hit       driver' 

Note that under the no-congestion assumption, it is always possible to eliminate stall if 

prefetching is deep enough, but that, when this assumption is removed, it is no longer 

always possible to eliminate stall. Once all the disks are busy, no further increase in paral- 

lelism is possible and stall is minimized, at least if we neglect the impact of request sorting 

on disk access time as this model does. Under these conditions, the prefetch horizon is not 

the point at which stall is eliminated, but the point at which stall is minimized. 
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7.1.2 Experiments with a synthetic application 

How well does this new, ideal model predict performance? In this section, I present 

the results of a number of experiments with the synthetic application used to determine the 

system parameters which was first described in Section 6.2. In these experiments, the 

application iterates twice over 2000 unique random blocks from a file striped over an 

array of from one to ten disks. Because this is more than the 1536 blocks in the cache, and 

because informed caching is turned off (the TIP, no caching configuration), this results in 

4000 8 KByte disk reads. The file size is scaled with array size to a constant 32 MBytes 

per disk to keep the average disk access time roughly constant across array sizes. Tapp, the 

application elapsed time between read calls, is either 0, 1, 4 or 16 milliseconds. Disk 

queues are sorted with the CSCAN algorithm. 

Figure 7.2 compares the measured per-access stall time for this synthetic application to 

the stall predicted by Equation 7.5 for a selection of array sizes and values of Tapp. The 

model successfully captures the general shape of the curves. However, at small prefetch- 

ing depths it tends to underpredict stall and at large prefetching depths it tends to overpre- 

dict stall. These two discrepancies result from two different effects. 

At small prefetching depths, the key factor in determining performance is the amount 

of prefetching parallelism. The ideal model assumes that increasing prefetch depth 

increases prefetching parallelism up to the limit imposed by the array size. In practice, 

because the accesses are chosen at random from the whole file, multiple accesses may go 

to the same disk while another disk stays idle. The effect is much like the memory conten- 

tion that may occur in the interleaved memory banks of a supercomputer. This disk con- 

tention reduces the effective prefetching parallelism and consequently increases the stall 

relative to the predicted value. 

At large prefetching depths, multiple prefetches are queued at individual disk drives. 

When the queued accesses are sorted according to the CSCAN scheduling algorithm, the 

average disk access time drops. The deeper the queue, the smaller the average access time. 

Naturally, this reduction in disk access time reduces the stall time experienced by the 

application and leads to the model's overestimation of stall time at large prefetching 

depths. 



198 CHAPTER 7 

?15 
CO 

E 
CO 

§10 
Ü 
CO 
ft_ 
CD 
Q. 
CD      5 
E 

o 

co 
to 

16   24   32   40   48   56   64 
prefetch depth 

(a) Tgpp = 1 msec, disks = 1 

0 

i i i i i i i i i i i i i ■ i i i i i i i ■ ■ i i 

■CD' ' 'O- ■•■' © 

o■■■■■© measured 
—  predicted 

0     8    16   24   32   40   48   56   64 
prefetch depth 

(b) Tgpp = 16 msec, disks = 1 

16   24   32   40   48   56 
prefetch depth 

(c) Tgpp = 4 msec, disks = 2 

64 16   24   32   40   48   56   64 
prefetch depth 

(d) Tapp = 0 msec, disks = 3 

¥15 

CO 

8 10 
o 
CO 

0 
Q_ 
CD      5 
E 

CO 

CO 

I ' I ' I ' ■ ■ I 

 e-  ©. ^> 

0     8    16   24   32   40   48   56   64 
prefetch depth 

(e) Tapp = 1 msec, disks = 4 

16   24   32   40   48   56   64 
prefetch depth 

(f) Tgpp = 0 msec, disks = 10 

Figure 7.2. Measured per-access stall and stall predicted by the ideal model. This figure shows that for a 
broad range of application compute times and disk array sizes, the ideal model is a good overall predictor of 
stall time for a synthetic application. Nevertheless, for small prefetch depths, the model tends to 
underpredict stall, and for large prefetching depths, the model tends to overpredict stall. 
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To confirm that these two factors do indeed account for the discrepancies between the 

measured and predicted stall times, I ran some experiments in which these factors are 

eliminated. To eliminate disk contention, instead of choosing blocks randomly from the 

whole array, I cycled over the disks in the array and chose blocks randomly from within 

each disk. To eliminate the reduction in disk access time for deep queues, I used first- 

come-first-served (FCFS) instead of CSCAN disk scheduling. 

Figure 7.3 shows that excepting these two factors, the ideal model is an extremely 

good predictor of actual performance. The only remaining significant discrepancy is the 

stall on a single disk. Here we see that having a second I/O queued at the drive itself 

allows some of the SCSI and interrupt servicing overheads to be overlapped with the 

actual disk access. 

The ideal model successfully captures the first-order effects, but its overestimation of 

parallelism on larger arrays and of disk access latency at large queue depths leads to sig- 

nificant differences between predicted and actual performance. A more accurate model 

would require better estimates of both parallelism and access times. To be most accurate, 

such estimates would have to take the specific workload into account. For example, the 

parallelism of a purely sequential workload is roughly the prefetch depth divided by the 

number of blocks in each stripe unit, 8 in these experiments. On the other hand, the access 

time for sequential accesses is much less than for random accesses. Developing a work- 

load-dependent model is an interesting area for future research; it is beyond the scope of 

this dissertation which is limited to generating estimates for prefetching or ejecting blocks 

without considering the broader workload. 

7.1.3 Analysis 

Let us now return to the original question: why does TIP perform well on small num- 

bers of disks even though it's prefetching model assumes that there are enough disks to 

avoid any disk congestion? 

Intuitively, many people suspect that the lower I/O bandwidth of a smaller array 

would necessitate deeper prefetching. But, the results in Figure 7.3 show that, from the 

perspective of I/O parallelism, a smaller array requires prefetching less deeply, not more. 

For example, in Figure 7.3b, a prefetch depth of only two minimizes stall on a single disk, 
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Figure 7.3. Stall time when disk contention and disk scheduling are eliminated as factors. With these 
factors eliminated from the experiments, the ideal model becomes an excellent predictor of performance for 
all prefetching depths, application compute times, and array sizes. The only remaining discrepancy is on one 
disk where we see that having a second request queued at the drive allows the overlap of SCSI command 
processing with the actual disk access. 

whereas a prefetch depth of about twelve is required to minimize stall on ten disks. Effec- 

tively, once the prefetch depth is great enough to keep all disks active, prefetching more 

deeply cannot further increase I/O parallelism; it takes fewer prefetches to keep fewer 

disks active. Thus, from the perspective of I/O parallelism, the assumption of no disk con- 
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gestion, which is equivalent to assuming a very large array, led to a high estimate of the 

benefit of prefetching deeply. Thus, when TIP ran with a small array, its prefetching was 

deep enough to keep the array busy in most cases.1 

Was TIP's prefetching therefore too deep? Consider stall on a single disk in Figure 

7.2a. There, disk scheduling is not eliminated as a factor (as it is in Figure 7.3) and stall 

continues to drop at least to a prefetch depth of 64. On smaller arrays, there is no increase 

in I/O parallelism from prefetching more deeply, but there is a reduction in the average 

disk access time. When bandwidth is most limited, it is most important to maximize band- 

width by reducing the average access time through disk scheduling. Thus, from the per- 

spective of disk scheduling, prefetching should be deepest on a single disk. 

TIP performs well on all array sizes because its upper-bound prefetch horizon, P, 

strikes a reasonable balance across array sizes. On larger arrays, it is sufficient to deliver 

the parallelism needed to mask stall. On smaller arrays, the prefetching depth not used for 

parallelism serves to reduce access time through disk scheduling. 

7.2 Tightening the bound on prefetch depth 

The applicability of a fixed, upper-bound prefetch horizon, P, to all array sizes is for- 

tuitous. But, because the use of P was a simplification to ease implementation (see Sec- 

tion 4.3.2), and because its applicability to scheduling on small arrays was not derived 

from the performance model, there is some concern that the use of a such a static prefetch 

horizon will not be robust in the face of the inevitable changes in system performance 

parameters. As CPU performance increases, the time to service a hit, Thit, will shrink rela- 

tive to the disk access time, Tdisk. This could push P to hundreds or thousands of accesses. 

Alternatively, when prefetching from a remote server, access latencies could be quite high 

which could also increase P. Will it still make sense to prefetch to that depth for all hint- 

ing processes? 

On the current TIP testbed, P=73. This is a small number compared to the cache size 

of 1536. P is an upper bound, and therefore larger than it needs to be in some cases, but 

there is little pressure to prefetch less deeply; using fewer buffers for prefetching would 

It turns out that caching can cause the array to go idle and that deeper prefetching can improve 
performance in such cases. I will get to this issue in Section 7.3.1. 
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not significantly increase cache performance in most cases. One could imagine putting 

pressure on the prefetch depth by running a large number of hinting applications simulta- 

neously, but I have not performed experiments of this sort. However, if P grows faster 

than memory sizes and becomes a large portion of the cache, then it will be time to recon- 

sider some of the simplifications that were made in the current implementation; the system 

will no longer have the luxury of being so generous with prefetch buffers. It will have to 

distinguish more accurately between those occasions when prefetching deeply is benefi- 

cial and those when it is not. Three factors could be considered to arrive at a more conser- 

vative, accurate estimate of the benefit of using buffers for prefetching. 

First, instead of assuming that application CPU time, Tapp, is negligible, and using a 

single system-wide prefetch horizon, the system could monitor application inter-request 

compute time and determine a per-application prefetch horizon from Equation 4.11. As 

shown by Figure 7.2b, the prefetch horizon shrinks dramatically when applications per- 

form a significant amount of computation. To accommodate high degrees of multipro- 

gramming, it may be useful to take the sharing of the processor into account and, instead 

of using the single process compute time, Tapp, in the benefit equation, use the inter-access 

non-idle time which would include other processes' compute time. This would scale back 

the prefetch horizon for any single process when the processor is shared among many pro- 

cesses. The upper-bound prefetch horizon really applies to the system as a whole, not indi- 

vidual processes; multiple processes cannot consume data any faster than one. 

Second, congestion and finite bandwidth which affect I/O parallelism, p from Equa- 

tion 7.4, could be incorporated into the prefetching benefit estimate as suggested by Equa- 

tion 7.5. The ideal model tells us that once there are enough outstanding prefetches to keep 

all disks busy, queuing additional requests does not increase I/O parallelism, assuming an 

evenly distributed workload and that caching does not let disks go idle.2 From this per- 

spective of I/O parallelism, the size of the array determines how deeply to prefetch. How- 

ever, as mentioned above in Section 7.1.2, the most accurate estimate of parallelism as a 

function of queued prefetches would depend on the specific workload. Nevertheless, the 

When disks go idle either because the load is unbalanced, or because a run of cache hits leads to a 
lull in disk activity, recent work, which I discuss in Section 7.3, shows how to take advantage ofthat idleness 
for deep prefetching. In Section 7.3.3,1 return to this simple model and suggest ways to apply those lessons 
here. 
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key point is that it is not necessary for the prefetching depth to scale with the performance 

disparity between processors and disks, it is only necessary for it to scale with the size of 

the attached array. A balanced system should have enough buffers to keep all disks busy. 

Finally, if finite bandwidth considerations scale back prefetching depth, then a better 

estimate of the benefit of disk scheduling should also be included to earn buffers for 

deeper prefetching when it would reduce stall. This benefit depends primarily on the 

workload and the length of the queue at each disk, and so, as was the case for parallelism, 

the optimal prefetching depth does not scale directly with processor performance. How- 

ever, a thorough study of disk scheduling in the presence of hints remains an area for 

future research. Here are two problems that need to be addressed. 

The first is determining the impact on average access time, Tdisk, of queuing additional 

requests. There is no point in depriving the cache of buffers to queue requests if doing so 

will not reduce average access time, and, ultimately, I/O service time. But, as Lesson 4 in 

Section 6.5 pointed out, sorting requests does not reduce access time if the requests are 

already in ascending order. On the other hand, sorting can significantly reduce the access 

time of random accesses. If it were possible to scan upcoming requests and estimate 

access time reduction as a function of queue depth, it would be possible to estimate the 

scheduling benefit of queuing additional requests. 

The second, more subtle problem is related to the fact that the requests are ordered. If 

1000 prefetches are queued at once, the device driver is free to completely reorder them. If 

the prefetch for the first read were sorted to the last position in the queue, then the applica- 

tion would block until all 1000 disk requests had completed. If the disk is the bottleneck, 

and the reordering would reduce the aggregate service time for all the requests by a factor 

of ten, then forcing the application to wait for all accesses to complete could be the right 

course to take. However, if the disk is not the bottleneck when prefetching, then reorder- 

ing the first request to the end would remove the chance to overlap any computation with 

I/O; queuing 1000 requests would increase elapsed time, not reduce it. 

One approach, known empirically to be effective [Cao96], is to issue prefetches in 

batches. A new batch of prefetches could be issued just before the disk completes servic- 

ing the previous batch. Batches limit reordering while providing a disk scheduler the 

opportunity to sort requests. If batches are used, the key problem becomes estimating the 
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benefit of adding a buffer to increase the batch size. Developing such an estimate remains 

an area for future work. 

7.3 Comparison with other systems 

Although the experiments in Chapter 6 clearly demonstrate the effectiveness of the 

TIP informed prefetching and caching system, they leave open the possibility that some 

other system might make even better use of the application's disclosure hints. In a recent 

collaboration with Andrew Tomkins and other researchers, I endeavored to compare the 

cost-benefit approach to another proposed algorithm, and to extend the cost-benefit frame- 

work to include the dynamic load on the disk in its cost-benefit estimations. This exten- 

sion is beyond the scope of this dissertation and neither it nor the experiments evaluating 

the extensions will be described in detail here. However, in this section, I will briefly sum- 

marize the results of this work and direct readers to other sources for more information. 

The primary alternative to cost-benefit analysis is an approach developed by Pei Cao, 

Anna Karlin and other collaborators. Their approach was to decompose the problem into 

two sub-problems. The first is how to prefetch and cache for a single process that dis- 

closes all of its accesses. The second is how to allocate buffers globally among multiple 

processes. This decomposition led to two studies that explored alternative solutions to the 

two sub-problems. 

7.3.1 Prefetching and caching for a single process 

The aggressive algorithm was designed to prefetch and cache in the presence of com- 

plete knowledge of all future accesses [Cao95]. The algorithm is as follows: whenever the 

disk is free, eject the block whose next reference is furthest in the future to prefetch the 

block whose next reference is soonest, provided that the prefetched block will be refer- 

enced before the ejected one. The algorithm was developed with a single disk in mind 

which it uses to pace prefetching. Extended to multiple disks, whenever any disk is free, 

the algorithm prefetches the next-referenced block from that disk subject to the same ejec- 

tion constraint as for the single disk. In an implementation of the algorithm [Cao96], 

prefetches are issued in batches of 16 to provide the opportunity for disk scheduling to 

reduce average access time. 
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In comparing the cost-benefit and aggressive algorithms, it is useful to note that in the 

single-process, complete-knowledge case, the two algorithms make very similar replace- 

ment decisions. The block with the lowest ejection cost is the one whose next access is 

furthest in the future and the block with the greatest prefetching benefit is the next missing 

block. Furthermore, the benefit of prefetching a block never exceeds the cost of ejecting a 

block that will be referenced before the ejected block. The key differences between the 

algorithms are (1) that cost-benefit only prefetches out to the prefetch horizon whereas 

aggressive may fill the cache with prefetches, (2) that cost-benefit initiates new prefetches 

as data are consumed whereas aggressive initiates prefetches when the disk is idle, and (3) 

that the hysteresis in the cost-benefit estimates means that a block is only ejected to 

prefetch another that is referenced substantially before the ejected block (here, substantial 

means many tens to hundreds of blocks) whereas aggressive has no such hysteresis. 

A large collaboration, which included the developers of both algorithms, used trace- 

driven simulation to compare the performance of the aggressive and cost-benefit algo- 

rithms when all accesses are known in advance [Kimbrel96].3 Also studied was a third 

algorithm, reverse aggressive, which was designed to take disk load into account when 

making ejection/prefetching decisions. The study found: that all three algorithms provided 

large benefits compared to a non-prefetching system; that aggressive sometimes out-per- 

formed cost-benefit on small arrays; that cost-benefit out-performed aggressive on large 

arrays; and that reverse aggressive performed about as well as any algorithm in all cases. 

Aggressive outperformed cost-benefit on small arrays for benchmarks that had sub- 

stantial reuse, such as repeated sequential access, or highly unbalanced disk loads. When 

there is high reuse, cost-benefit may cache long subsequences of accesses, for example, 

for Davidson's repeated sequential access of the same file (see Section 4.2.7 for details on 

how this occurs). When the application is accessing blocks in such a subsequence, cost- 

benefit may let the disk go idle because all blocks within the prefetch horizon are already 

The study actually used a variant of the cost-benefit algorithm called fixed-horizon. It prefetches a 
fixed distance into the future whereas cost-benefit scales back prefetching when prefetching would eject 
cached blocks that will be reaccessed soon. For the cache sizes studied, and when there is only one stream of 
hints and therefore one set of cached blocks, there are always blocks available that will not be reaccessed 
until far in the future, and cost-benefit is equivalent to fixed-horizon with the horizon set to the upper-bound 
prefetch horizon, P. 
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Figure 7.4. The lost opportunity of not prefetching during idleness on a small array. When an 
application is consuming a long sequence of cached data, the disk is not needed to service the application's 
immediate requests and the disk may go idle. Figure (a) shows how aggressive takes advantage of this 
idleness to prefetch as far into the future as possible. In contrast, Figure (b) shows how cost-benefit's 
bounded prefetching lets disks stay idle. Cost-benefit does not resume prefetching until consumption is 
within the prefetch horizon, P, at time 2. When bandwidth is limited, prefetching can't keep up with 
consumption, and the application stalls sooner than it would have had prefetching continued throughout. 

cached as shown in Figure 7.4. Aggressive takes advantage of these lulls in disk activity to 

prefetch very far in advance. Similarly, when the disk load is unbalanced, aggressive takes 

advantage of lulls in activity on one disk to prefetch more deeply on that disk. Aggressive 

therefore maximized utilization of a single disk and I/O parallelism on an array. When the 

bandwidth of a single disk or small array is the performance bottleneck, or when an unbal- 

anced load reduces the number of active disks and therefore the effective size of an array, 

aggressive can eliminate some stall and increase performance. 

On larger arrays, aggressive used the high bandwidth available to flush the cache and 

fill it with prefetched data as shown in Figure 7.5. In contrast, cost-benefit, which assumes 

ample bandwidth, prefetches only deeply enough to ehminate stalls. Consequently, even 

though neither algorithm suffers significant stalls on larger arrays, aggressive performs 
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Figure 7.5. The wasted effort of prefetching too aggressively on a large array. Aggressive always ejects 
a cached block if it can take advantage of an idle disk to prefetch a closer block. Figure (a) shows how, when 
sufficient parallelism exists so there are often idle disks, aggressive flushes distant, cached blocks and fills 
the cache with prefetched blocks. In applications with significant reuse, this will incur unnecessary driver 
overhead by performing a disk access for each request which can have a significant impact on the elapsed 
time. Figure (b) shows how, in contrast, cost-benefit's bounded prefetching retains the distant bocks for reuse 
but because there is enough bandwidth for prefetching to keep up with consumption, no stall ensues. 

substantially more disk accesses than cost-benefit. These additional accesses incur the 

CPU overhead, Tdriver, of performing an access which adds to the elapsed time for the 

aggressive algorithm. 

The lesson from these experiments was that prefetching should be sensitive to the 

long-term load on the disks. When disk bandwidth is the constraining resource, prefetch- 

ing during periods of transient disk idleness can avoid stalls far in the future and reduce 

elapsed time. On the other hand, when disk bandwidth is not the constraining resource, 

prefetching beyond the prefetch horizon can unnecessarily flush the cache and add CPU 

overhead to an application's elapsed time. 

Unfortunately, although reverse aggressive was already sensitive to disk load, it had 

too much computational overhead to run on-line. However, the collaboration developed a 

new algorithm, forestall, which is sensitive to disk load and has reasonable overhead. The 
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algorithm uses fixed-horizon for near-term prefetching and a disk-load sensitive algorithm 

for deep prefetching. The basic idea is to look forward in the hint sequence, estimating for 

each access when the disk will be able to perform the hinted read and when the application 

will issue the actual read request. If the disk will have no problem servicing the prefetch in 

time, then the prefetch may be delayed until the access reaches the prefetch horizon. On 

the other hand, if the request is anticipated before the disk will be able to service the 

prefetch, then the disk is constrained and prefetching from that disk should begin immedi- 

ately. The simulation results showed that forestall's performance for any benchmark on 

any array size ranges from only 2% slower to as much as 5.8% faster than the better of 

aggressive and cost-benefit on each configuration. 

Sensitivity to disk load, such as that found in forestall, is not incorporated into the 

prefetching-benefit estimate in Chapter 4 because the scope of this dissertation is limited 

to estimates that are independent of both the layout of hinted data on disk and the current 

contents of the cache. The slower performance of cost-benefit on small disks and for 

unbalanced loads is the cost of these simplifications. However, as described below, recent 

extensions to this work show how to incorporate disk load not only into the prefetching- 

benefit estimate, but also into the ejection-cost estimate. 

7.3.2 Allocating resources among multiple processes 

A second comparative study investigated the second sub-problem: how to prefetch and 

cache when there are multiple processes and when not all accesses are hinted 

[Tomkins97]. The study compared using the time-tested LRU algorithm to make global 

allocation decisions to the cost-benefit approach. 

Pei Cao showed how to adapt the LRU algorithm to partition the cache buffers among 

competing processes while using an algorithm such as aggressive or forestall to decide 

within a partition when to prefetch and what to eject [Cao96]. The idea is to maintain a 

global LRU queue with each buffer being owned by the process that last accessed it, and, 

instead of simply ejecting the block at the head of the LRU list, to give the owner of the 

head block the opportunity to hold onto that block and eject a different one of its blocks 

instead. She showed how swapping and placeholders could be used assure fairness and 
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robustness in the face of poor replacement decisions. The resulting algorithm is called 

LRU-SP. 

The cost-benefit approach does not explicitly partition the cache, but instead uses 

independent estimators and the common currency to make allocation decisions. Recent 

work has shown how to adapt the disk-load- sensitive forestall algorithm to the cost-bene- 

fit approach to build a modified TIP system called TIPTOE (TIP with temporal overload 

estimators) [Tomkins97, Tomkins97a]. The adaptation requires generating a benefit esti- 

mate in terms of the common currency. 

The fundamental modeling insight of Chapter 4 remains the basis of TIPTOE: the ben- 

efit of prefetching is the reduction of stall. However, the forestall algorithm showed the 

superiority of a stall estimate that takes transient disk load into account. The forestall tech- 

niques can be used to detect constrained disks that will cause stall. A disk is constrained if 

it cannot service all prefetches in time even if prefetching non-stop starting immediately. 

Detection of constraint involves estimates of how quickly the application is consuming 

data and how quickly the disk can service prefetches. The TIPTOE work determined the 

change in stall that results from deep prefetching beyond the prefetch horizon on a con- 

strained disk and also the change in buffer usage or bufferage required to obtain that 

reduction in stall. Dividing the one by the other produces the following common-currency 

benefit of prefetching a block x accesses in advance from a constrained disk: 

Benefit,,       - = AT
*"P-B{

X)
 = I**h . (7.6) 

deepjf      Abufferage x K     } 

Within the prefetch horizon, TIPTOE applies TIP's benefit estimate which, from Equation 

4.24, is, 

* disk BenefV ■ Ji^fj ■ <"> 

for 1 < x < P. The difference is the roughly factor of x in the denominator which occurs 

because Equation 7.6 estimates stall on a single constrained disk, whereas Equation 7.7 

supposes that stall on one of x other accesses may mask stall for another. 

Constrained disks also affect ejection decisions. Recall from Equation 4.16 in Section 

4.2.4 that the cost of ejecting a hinted block is the additional CPU overhead of prefetching 
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the ejected block back plus any stall that will be incurred on the eventual access. The same 

stall estimate used to compute the benefit of deep prefetching can also be used to refine 

the cost estimate for ejecting blocks from a constrained disk. Doing so leads TIPTOE to 

this equation for the cost of ejecting a block from a constrained disk that will be accessed 

beyond the prefetch horizon: 

/-.    . _ ejectjconstrainedS   '  _     driver        disk .„ fi. 
eject_constrained ~ Abufferage " X ' (     ' 

TIPTOE uses TIP's estimate of the cost of ejection from unconstrained disks which, from 

Equation 4.31, is, 

T /-c    J. driver ,„ ^ 
Reject = -JZf   ■ (7-9> 

for y > P. The essential difference is that TIPTOE anticipates a stall for a full disk access 

for a block ejected from a constrained disk whereas TIP assumes that the prefetch will not 

stall. 

The multiple-process study used traces of the benchmark suite used in Chapter 6 to 

drive simulations of four algorithms: LRU-SP coupled with both the original aggressive 

algorithm and forestall, the TIP system described in this dissertation, and the TIPTOE sys- 

tem just described. Overall, the study found cost-benefit prefetching and caching to be 

somewhat better than LRU, reducing elapsed time from 5% to 8% over a broad range of 

combinations of two or three hinting and non-hinting applications. To first order, the LRU 

queue allocates buffers to processes in proportion to their rate of data consumption. But, 

rate of consumption is not a good indicator of data reuse. The study showed that the cost- 

benefit approach can take advantage of disclosure hints to cache the blocks whose reuse at 

a global level will be soonest and not waste buffers caching for low-reuse but high data 

rate applications. TIP's comparison of independent estimates in terms of the common cur- 

rency allows such a global assessment of value to be made efficiently. 

The single-process experiments that led to the invention of the forestall algorithm 

showed that it is fruitful to push beyond the cost and benefit estimates presented in this 

dissertation to arrive at estimates that are sensitive to transient disk load. However, the 
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work that incorporated the forestall lessons into the cost-benefit framework and led to the 

TIPTOE system shows the fundamental soundness of the cost-benefit approach. TIPTOE 

reconfirms the analysis that uncovered the basic relationships described in Chapter 4, 

namely that the benefit of prefetching is reduced stall, and that the cost of ejecting a hinted 

block is the CPU overhead of prefetching it back plus any stall that will be incurred. The 

fact that the disk-sensitive stall estimates could be incorporated into the framework high- 

lights the basic extensibility of the cost-benefit framework. Finally, the performance 

results demonstrate the superiority of the cost-benefit resource allocation over the conven- 

tional LRU algorithm. 

7.3.3 Applying TIPTOE to arrays that hide data layout 

Detecting an unbalanced load requires knowledge of the layout of data on the disk. 

What approach should be pursued when the interface to the storage subsystem hides these 

details from the file system? 

The first step is ehminating unbalanced loads as a problem. I believe this is largely 

possible if the storage subsystem randomizes the assignment of stripe units to disks and 

accepts hints so that it can prefetch internally to smooth out transient load imbalances. I 

discuss other support the storage subsystems could provide for informed prefetching and 

caching in Section 7.4.7. A remaining issue is determining the number of outstanding 

prefetches needed to achieve a desired level of parallelism. If the prefetcher knows how 

much raw parallelism is available and that addresses are randomized, it should be possible 

to estimate the parallelism achieved by a set of outstanding prefetches. But, this remains 

an area for future work. 

Assuming that the above techniques successfully eliminate load imbalance, deep 

prefetching is still desirable to take advantage of the idleness induced by runs of cache 

hits. But, if the system cannot prefetch from individual disks, it must prefetch from the 

array as a unit. I suspect that where the current model assumes that a storage device can 

perform one access in time Tdisk, an extended model could treat an array of d disks as 

being capable of servicing d requests in time Tdisk. Working out the details remains an 

area for future work. 
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7.4 Future work 

In the previous sections, I highlighted a number of areas for researchers to extend this 

work. But, I have not yet had the chance to touch on all such areas. In this section, I sum- 

marize areas that could benefit from additional work. These are organized loosely from 

the most TIP-specific to the most general. 

7.4.1 Implementation optimizations 

In Section 6.6, I identified LRU profiling as the biggest CPU overhead in TIP. The 

largest part of the overhead of LRU profiling, accounting for about a 3% overhead on the 

file system, is overflowing buffers from one segment of the LRU queue to the next (see 

Section 5.2.6 for a description of this process). This operation is required to determine the 

queue position of buffers that are the target of a cache hit. 

It might be possible to avoid this overhead by using a completely different approach to 

estimating the cost of ejecting an LRU buffer based on access numbers. Instead of break- 

ing the queue into segments, each buffer could be stamped with the number, in a global 

count of accesses, of the access that is releasing the buffer to the tail of the queue. When a 

cache hit occurs, the difference between the buffer's stamp and the number of the current 

access would indicate how many accesses had passed since the buffer was last referenced. 

To assess the value of buffers in the LRU queue, a histogram of hits vs. number of 

accesses in the queue could be kept on a running basis. Given the number of accesses that 

the buffer at the head of the LRU queue has been in the queue, it may be possible to con- 

sult this histogram and arrive at an expected value for the number of accesses until that 

buffer will produce a cache hit. From that, it should be possible to arrive at an estimate of 

the cost of ejecting the block at the head of the list. Clearly, much work remains to turn 

this sketch of an idea into a practical LRU estimator. 

7.4.2 Cluster-sensitive caching 

Informed clustering builds efficient sequential accesses out of smaller, possibly ran- 

dom accesses. As pointed out in Lesson 7 in Section 6.5, replacement decisions affect the 

opportunity for clustered prefetches to refetch ejected blocks. A useful area for future 

research would be developing an estimator for the cost of ejection that was sensitive to 

clustering opportunities for the subsequent prefetch. 
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7.4.3 Protecting the unhinted cache from hinted blocks: the post-hint estimator 

In TIP, all blocks are placed on the LRU queue after they have been accessed whether 

the access was hinted or not. This is the behavior of the unmodified system, and at the 

time of the original implementation, I had no good reason to implement a different policy. 

However, a consequence of this policy is that the LRU queue is shared between blocks 

that were hinted and unhinted. Effectively, hinters get their normal share of the LRU 

queue and then, if their hints disclose reuse, they take additional buffers from the LRU 

queue to cache their hinted data. Hints only increase an application's share of the cache, 

they do not decrease it. No similar mechanism lets unhinted blocks gain a larger share of 

the cache; unhinted blocks must always share the LRU queue with blocks that have been 

hinted and read. 

In many cases, this policy works well. Some applications perform unhinted accesses to 

previously hinted blocks and rely on the LRU queue for cache hits. Also, sometimes hints 

for a second hinted access appear long after the first hinted access. For example, Gnuld 

issues hints for some of its passes only after the previous pass has completed. If the LRU 

cache did not hold on to these blocks, these reaccesses would not be cache hits. 

On the other hand, many hinted blocks are never or seldom reaccessed, as in the case 

of Agrep or XDataSlice, or are reaccessed only according to hints which the system 

already has available, as in the case of Davidson or Postgres' outer-relation data accesses. 

When these applications are running alone, this is not a problem; the LRU estimator cor- 

rectly discerns that there are few hits in the LRU queue, and the queue shrinks, leaving all 

of the buffers for hinted accesses. However, if a hinting and non-hinting application are 

running together, or if a single application interleaves hinted and unhinted accesses, the 

many unneeded hinted blocks dilute the effectiveness of the LRU queue for caching 

unhinted data. 

The LRU caching behavior for hinted and unhinted blocks should be adaptive to per- 

form well in both cases. One possible way to achieve this is to maintain a separate LRU 

estimator for hinted blocks. If hinted blocks are reaccessed or rehinted later, then the 

queue in such a post-hint estimator will grow. However, if unhinted blocks are reaccessed 

more often, then the original LRU queue, which is no longer diluted with unhinted blocks, 

will grow. 
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In my recent collaboration with Andrew Tomkins, we found, in simulation, that such a 

post-hint estimator could reduce elapsed time for a pair of applications by as much as 

30%, and that the average reduction for a set of seven single-process and 11 multi-process 

experiments on a range of array sizes was nearly 5% [Tomkins97]. 

Implementing a post-hint estimator remains an area for future work. The only stum- 

bling block I anticipate is the active region of the LRU queue (see Section 5.3.3 for a 

description of the active region). Because the active region in the LRU queue is protected, 

its buffers would be unavailable for caching post-hint blocks if these were sent to a sepa- 

rate post-hint queue. Consequently, a post-hint queue would have a smaller effective size 

than the current single queue. One way around this would be to send all buffers through 

the active region and only send buffers to the post-hint queue as they overflowed from the 

active to the inactive region of the queue. 

7.4.4 Generalized estimators 

A post-hint estimator is just one example of new estimators that could be added to the 

TIP system. Generalizing, the cost-benefit framework allows the system designer to iden- 

tify subclasses of a resource, such as post-hint buffers, and then build an estimator for the 

value of allocating resources to that subclass. All that is required is that the estimated val- 

ues be accurately expressed in terms of the common currency, and that the estimator sup- 

port the required pick, query, update and bid operations described in Section 5.2.4. An 

interesting area for future work would be exploring what sorts of different subclasses 

might be useful in practice. Here are some possibilities: 

• Currently, there is a separate estimator for every hinting process. Should each 

non-hinting process have its own LRU queue? Or, should there only be one esti- 

mator for each process group? If separating hinted from unhinted blocks is a 

good idea, perhaps separating the blocks from all processes would be beneficial. 

• Heuristic prefetching has the advantage of not requiring any application modifi- 

cations. Perhaps sequential readahead and more sophisticated heuristics could be 

embodied in prefetching estimators. If they were successful at predicting future 

accesses, they would merit buffers for prefetching. 

• Virtual memory shares the same memory resource with the file buffer cache. The 
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two could be managed as a single resource with the addition of a virtual memory 

estimator. 

7.4.5 The hint interface 

The disclosure-hint interface described in Chapter 3 is simple and straight-forward. 

One could imagine many possible enhancements. In many cases, supporting such 

enhancements would require substantial extensions to the TIP system. Here are some 

examples. 

The current interface only allows a process to give a single linear stream of hints about 

its own accesses. There are times when an application may not know the exact interleav- 

ing of its requests and so desire to create multiple parallel hint streams. Postgres could 

have used such a facility to give a hint for the second sequential read of the inner relation 

which occurred in parallel with the outer-relation accesses (see Figure 6.14). 

In some cases, it may be desirable for one process to give hints about the accesses of 

another. For example, a C compiler can scan source code for '#include' directives, but it 

cannot know what files these included header files will themselves include. However, the 

make program could know all of the header files if the makefile included a full list of 

dependencies. In such a case, the make program could give hints about what files the C 

compiler will include. One challenge in supporting hints from multiple sources is recog- 

nizing when the system has received duplicate hints for the same accesses. 

The current interface requires that all hinted accesses either occur or be cancelled. 

Some applications may not be able to deliver such accuracy; they may inadvertently skip 

some hinted accesses. The system could be made resilient to minor inaccuracies. How- 

ever, as discussed in Section 3.2, such resiliency may complicate the programming model 

and be undesirable for that reason. Is there a way to add such resiliency without compli- 

cating the programming model? 

Inaccurate hints are hints that are wrong. Imprecise hints are correct, but do not dis- 

close full information. For example, Postgres was unable to give precise hints about its 

accesses to the inner-relation index. However, it would have been easy for Postgres to dis- 

close that it was going to perform about 4000 random accesses to the index. Note that, in 

contrast to hints that advise the system to cache index blocks with high-priority, such an 
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imprecise hint adheres to the disclosure hint model; it discloses what the application is 

going to do. An informed prefetching and caching system could use this information to 

cache at high priority. But, if enough buffers were available, it could also decide to 

prefetch the whole index with efficient, sequential accesses and then service the random 

requests from the cache. The disclosure hint gives the system the knowledge it needs to 

make such a decision. 

A variant of the imprecise hint could be an exclusive-or hint which discloses that one 

of several files will be accessed. For example, if users are looking at a menu of files they 

could view, the system could hint that with high probability one of the files on the menu 

will be read. 

Imprecise hints are incompatible with rigorous matching of hints to accesses. To help 

the system's hint matching stay synchronized with the application, it may be desirable for 

applications to insert markers in a hint stream. For example, an application could disclose 

that it will perform several hundred random accesses and then a 100-block sequential 

access. If the application could put a marker between the two hints, it could later inform 

the system that the random reads were over and the sequential accesses were about to 

begin by indicating that it had consumed all hints before the maker. These markers could 

also help the system stay synchronized with an interactive application that may need to 

abruptly change course. 

7.4.6 Automatic hint generation 

In Chapter 3,1 showed that many applications can be annotated to give a substantial 

number of precise hints without too much difficulty. However, I am sure that many more 

programs would give hints if annotations could be added automatically. We have already 

seen that compilers can generate hints for scientific applications [Mowry96], but much 

remains to be done for irregular programs. 

On a more speculative level, it might be possible to combine simple compiler tech- 

niques with access profiling. For example, it might be possible to augment Lei and Duch- 

amp's access pattern trees [Lei97] with the disclosure of the arguments passed to a 

program to arrive at a more accurate prediction of accesses. Such a simple disclosure 

would not be hard to generate automatically. At a finer granularity, it might be possible to 
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profile procedures or modules within a program and correlate accesses with the parame- 

ters passed when invoking the procedure. 

7.4.7 Disk subsystem enhancements 

In the course of building TIP and experimenting with its performance, it became clear 

that the disk subsystem could do more to support informed prefetching. 

First, support for low-priority requests needs to be added to the SCSI command set. 

The current interface supports high-priority, head-of-line requests. One could imagine 

queuing demand requests at this high-priority, and queuing prefetch requests at normal 

priority. But, these high-priority requests are serviced in-order and so don't benefit from 

on-disk scheduling. It would be better to have separate class of low-priority requests that 

would benefit from scheduling, would not starve, and could be promoted from a low-pri- 

ority to a high-priority request. 

Second, storage subsystems, which often hide the details of data layout, should export 

an interface that allows file-system and application clients to optimize their workload for 

performance. The SCSI interface, for example, makes no guarantees about data place- 

ment, but there is a common understanding that blocks stored in sequential linear block 

addresses will tend to be stored in sequential locations on the disk surface. Further, blocks 

stored at close logical addresses will tend to be stored near each other on the disk surface 

so that seeks between them are short. The SCSI interface hides details of rotational posi- 

tion, but, through convention, exposes the most important features: sequentiality and prox- 

imity. The Logical Disk interface makes these two characteristics explicit [de Jonge93]. 

Disk arrays have a third important performance parameter, parallelism. Ideally, the 

interface to an array would expose all three parameters. File-system and application cli- 

ents should know when an access will be sequential within one stripe unit on a single disk. 

They should be able to specify in some way that blocks should be near each other. They 

should be able to issue multiple requests and be reasonably confident that they are fully 

exploiting the parallelism of the array. And, if there are any important parity update opti- 

mizations, such as the large write optimization (see Section 2.1), clients should be able to 

exploit them. It is probably not possible or even desirable to expose the details of the lay- 

out, and consequently truly optimal performance will not be possible. But, the interface 
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should expose enough information for clients to take advantage of the key performance 

characteristics of the subsystem. It would be optimal if clients could know that they were 

exploiting all ten disks in a ten-disk array, but it would be acceptable if they could at least 

be confident they were exploiting eight or nine of the ten. 

Informed prefetching and caching systems need to know how to issue requests to max- 

imize parallelism as discussed in Sections 7.1.2 and 7.3.3. The first step is to make sure 

clients know how many requests, on average, need to be queued at the subsystem to keep 

all disks utilized. But, workloads can be unbalanced. If the actual data layout is hidden, 

there is no way for the prefetching file system to know that its requests are generating an 

unbalanced load. Two mechanisms could avoid this problem. First, randomizing the 

assignment of stripe units to disks would reduce the likelihood that a workload is patho- 

logically unbalanced. Second, the subsystem could itself accept hints about future 

accesses. Then the subsystem could prefetch more deeply when necessary to smooth out 

transient load imbalances. 

7.4.8 A disk array for everyone 

This dissertation has clearly demonstrated the utility of disk arrays for serial work- 

loads when hints are available for informed prefetching. But, this is not a lesson just for 

data centers and expensive workstations; everyone could use a disk array, even desktop 

personal computers. Although many PC applications are not particularly I/O-intensive 

when running, almost all of them are during launch. 

The problem is that current arrays are not cheap. Clearly, it does not make economic 

sense to attach a private 10-disk array to a 16 MByte PC. And yet, I believe PCs could use 

the bandwidth of such an array. The challenge, then, is to develop architectures for shared 

storage that can deliver the array performance at an affordable cost. If such an infrastruc- 

ture became available, I suspect application writers would find a way to take advantage of 

it, and I/O-intensive PC applications would become commonplace. 

7.5 Conclusion 

In this chapter, I carried the analysis of the previous chapters one step further. I 

explored the impact of removing the assumption of no congestion and used that analysis to 

shed light on TIP's performance on small arrays where the assumption is clearly violated. 
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I showed that from the perspective of I/O parallelism, smaller arrays require less deep 

prefetching. But, deep prefetching on small arrays produces greater opportunities for 

scheduling to reduce the average disk access time. The upper-bound prefetch horizon, P, 

works well because it is a reasonable compromise across array sizes. 

Through time, the growing performance disparity between disks and processors will 

increase P and the time will come to drop some of the simplifications of the current 

implementation and include computation time, Tapp, in benefit estimates. Further, by 

explicitly modeling the benefit of parallelism and disk scheduling, tighter bounds on the 

number of buffers required for prefetching should be obtainable. 

I discussed recent related work that showed that the TIP prefetching benefit model 

works well when high bandwidth is available. But, that work also shows that when ample 

bandwidth is not available, and when unbalanced workloads or runs of cached blocks 

result in idle disks, the system should take advantage of that idleness to prefetch beyond 

the prefetch horizon. I described joint work with Andrew Tomkins in which we developed 

an estimator for the benefit of using buffers for such deep prefetching and incorporated it 

into the cost-benefit framework and so built TIPTOE. 

I went on to discuss other possible extensions to the cost-benefit framework including 

a post-hint estimator to protect the LRU queue for unhinted accesses. Many other exten- 

sion are possible. 

The resilience of the cost-benefit framework to changing conditions and parameters as 

well as the many opportunities for extensions show that the fundamental approach 

adopted for TIP is sound. Cost-benefit analysis provides a durable, extensible framework 

for resource management. 
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Chapter 8 

Conclusion 

In the late eighties and early nineties, researchers argued that storage device parallel- 

ism was required for secondary storage performance to balance increasing processor per- 

formance and proposed Redundant Arrays of Inexpensive Disks (RAID) to provide that 

parallelism [Patterson88, Gibson92a]. Since then, the processor and storage performance 

trends they identified have continued. In my analysis of the four principal virtues of stor- 

age workloads that maximize performance (ASAP or avoidance, sequentiality, asyn- 

chrony, and parallelism), I again found that only parallelism could satisfy the demand for 

storage throughput. The other virtues help maximize the throughput of arrays of all sizes. 

Unfortunately, many computer applications have serial I/O workloads that access only 

one disk at a time and are therefore unable to take advantage of disk-array parallelism. 

How can systems deliver the performance of parallel I/O to such applications? The key 

performance insight is that aggressive prefetching can do for serial reads what buffering 

does for serial writes: mask latency with asynchrony and expose parallelism for through- 

put. No longer should prefetching be viewed simply as a technique for overlapping I/O 

with computation; I/O parallelism is prefetching's greatest benefit. 

How can such aggressive prefetching be achieved given the difficulty of predicting 

future accesses and the performance penalty of prefetching unneeded data? In this disser- 

tation, I show that many applications can disclose their future file requests in hints, and 

that a system can use these hints to decide when and how much to prefetch, and what to 

cache. Formally, the thesis of this dissertation is that many important, I/O-bound applica- 
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tions can provide accurate hints about their future accesses, that operating system 

prefetching and caching according to these hints can substantially reduce application wall- 

clock elapsed time, and that run-time cost-benefit analysis can be the basis of effective 

resource management that balances the use of cache buffers for prefetching, clustering 

prefetches, caching for hinted accesses, and caching in a traditional LRU queue. 

The proof of the thesis is in three steps. First, I develop techniques for annotating 

applications to give hints about their future file requests and show they can be used to 

annotate a suite of six important, I/O-intensive applications. Second, I develop a frame- 

work for resource management based on the run-time application of cost-benefit analysis 

and build an informed prefetching and caching system, called TIP, based on this frame- 

work. Finally, through measurements of the performance of the annotated applications 

running on TIP, I show that the operating system can use application hints to allocate 

resources and deliver the promised performance gains. 

The vision set forth in this dissertation is that serial applications need only disclose 

their future accesses to obtain high-performance, parallel I/O. The implication is that 

applications need not be rewritten to be more parallel — often a difficult task. Nor need 

they manage a private buffer pool and asynchronous I/O requests. Nor need they be con- 

cerned with the number and timing of prefetches and how these might vary on different 

machines. Nor need they violate the modularity of the file system by controlling specific 

implementation actions. Instead, applications need only disclose in advance the requests 

they will make of the file system. Further, they can use the same terms that already define 

the file-system interface to disclose this information and thereby respect the modularity of 

the system. And, in doing so, they free the operating system to optimize resource usage 

globally because they provide the evidence for a policy decision. 

The hope is that some day, application disclosures will be generated automatically. 

For the purposes of proving my thesis, however, it is sufficient to show that applications 

can be annotated by hand. In Chapter 3,1 describe three techniques for annotating applica- 

tions to give disclosure hints: in-line hints, loop duplication, and loop splitting. I then 

apply these techniques to annotate a broad suite of I/O-intensive applications which 

includes: Davidson computational physics, XDataSlice 3D scientific visualization, Gnuld 

object code linker, Sphinx speech recognition, Agrep text search, and two queries to the 
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Postgres relational database. Thus, I have shown that important and diverse applications 

can provide hints about their future accesses. 

For the vision of high-performance, parallel I/O through application disclosure to 

become reality, I have to show how a system can use disclosure hints to deliver the prom- 

ised performance. In this dissertation, I described a system that takes advantage of disclo- 

sure hints for four primary I/O optimizations: 

1. informed caching to hold on to useful blocks and outperform LRU caching indepen- 

dent of prefetching; 

2. informed clustering of multiple accesses into one larger access; 

3. informed disk management that better schedules accesses to increase access effi- 

ciency; and, 

4. informed prefetching to parallelize the disk workload and mask access latency. 

All of these optimizations require use of the cache buffers already employed for tradi- 

tional LRU caching. The primary challenge in automatically applying these optimizations 

is building a mechanism that can balance the use of cache buffers for all of these optimiza- 

tions as well as LRU caching. 

The thesis posits that run-time cost-benefit analysis can be the basis of a mechanism 

that effectively balances the use of cache buffers. The motivation for using cost-benefit 

analysis is two-fold. First, cost-benefit analysis provides a rational basis for allocating 

buffers that does not depend on the proper adjustment of a number of tuning knobs. Sec- 

ond, cost-benefit analysis is a general technique that should easily accommodate estimates 

for new resources, such as virtual memory or remote files, as well as improved estimates 

for resources already being managed. The thesis claims neither of these assertions, but 

they did guide me in my design. 

In Chapter 4,1 develop a framework for the run-time application of cost-benefit analy- 

sis to resource management. The framework includes three key components. First, inde- 

pendent cost and benefit estimates of the impact on VO service time of ejecting a block or 

allocating a buffer for a prefetch avoid the need to consider all possible replacements and 

thereby limit the complexity of the system and ease the integration of new estimates into 
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the system. Second, a common currency for the expression of cost and benefit estimates 

relates consumption of the cache buffer resource to the system goal of reducing I/O ser- 

vice time and enables the global comparison of the independently generated estimates. 

Finally, an allocation algorithm accepts the many independent estimates, expressed in 

terms of the common currency, scales them in proportion to their contribution to overall 

performance, and compares them at a global level to identify the replacement that would 

produce the greatest net reduction in I/O service time. 

The first step in building an informed prefetching and caching system on this frame- 

work is developing independent cost and benefit estimates. Chapter 4 shows how to use a 

model of I/O performance to estimate the cost of ejecting a hinted block or taking a buffer 

from the LRU queue, and to estimate the benefit of using a buffer to service a demand 

miss or prefetch a block. It goes on to suggest modifications to the estimates to ease 

implementation. And it presents an efficient algorithm that takes advantage of the inde- 

pendent estimates to find the globally least-valuable block so that it can be ejected and its 

buffer reallocated to prefetch new data when doing so would reduce I/O service time. 

Chapter 5 describes the details of TIP, my implementation of informed prefetching and 

caching based on this framework. 

The evaluation, in Chapter 6, of TIP's performance when running the suite of anno- 

tated applications shows that an operating system can indeed use disclosure hints to 

deliver the promised performance benefits. Figure 8.1 summarizes the results. Quantita- 

tively, TTP reduced elapsed times for the benchmarks on a single disk by up to 50%, with 

an average of 28%. On a ten-disk array, TIP took advantage of parallelism to reduce 

elapsed time by up to 84%, with an average of 64%. When multiprogramming on a single 

disk, where resource contention is at its worst, TIP reduced elapsed time for pairs of appli- 

cations by up to 48%, with an average of 37%. On a ten-disk array, TIP reduced elapsed 

time for pairs of applications by up to 73%, with an average of 58%. Further, all experi- 

ments with both a single application and when multiprogramming demonstrated a reduc- 

tion in elapsed time. 

All by themselves, these results argue that TIP must be allocating buffers effectively 

to optimize I/O performance. To further strengthen the argument, I measured TIP's cache 

and disk performance when hints were unavailable, when using hints for prefetching and 
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Figure 8.1. Elapsed time vs. array size with and without TIP. These graphs show elapsed time on multi- 
disk arrays as a fraction of elapsed time on a single disk without TIP for the suite of I/O-intensive 
applications. Graph (a), a reprise of Figure 2.2, shows that without informed prefetching and caching, only 
Davidson's sequential accesses benefit from array parallelism. Graph (b) shows that HP's informed 
prefetching and caching can take advantage of array parallelism for all of the applications. On a sufficiently 
large array, all become compute bound. Further, most perform better on a single disk with TIP than they do 
on a ten-disk array without TIP. 

clustering within the prefetch horizon, and when also using deep hints for informed clus- 

tering and caching. These experiments showed that the use of deep hints for informed 

clustering and caching could reduce application elapsed time by as much as 36% com- 

pared to prefetching alone. They also showed on a single disk that the longer disk queues 

generated by informed prefetching could reduce disk service time by up to 24%, and that 

informed clustering could reduce per-block service time by up to 22%. These specific 

results together with the elapsed time results demonstrate that TIP balances the use of 

buffers for all four I/O optimizations. 
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In recent joint work with Andrew Tomkins, we provide additional evidence in support 

of the claim that allocation based on cost-benefit analysis is effective by showing that, in 

simulation, the cost-benefit approach outperforms a competing approach which uses an 

LRU queue to allocate buffers at a global level [Tomkins97]. 

As described in Chapter 7, the same recent study and another [Kimbrel96], showed 

how to improve the specific prefetching-benefit and hinted-block-ejection-cost estimates 

proposed in this dissertation in Chapter 4. No claim is made that the estimators proposed 

here are optimal. To the contrary, my hope was that a framework for resource manage- 

ment based on cost-benefit analysis would be flexible and extensible. The fact that the 

improved estimators could be integrated into the existing framework argues that this is 

indeed the case. Recent work by David Rochberg extending TIP to prefetch from a distrib- 

uted file system further strengthens this argument [Rochberg97]. 

Collectively, these results show that disclosure hints are a feasible and effective mech- 

anism for passing I/O optimization information across the file-system interface that frees 

applications from the burden of buffer management and scheduling their own disk 

accesses. Further, they show that run-time cost-benefit analysis can be the basis of effec- 

tive cache resource management that takes advantage of disclosure hints for informed 

prefetching and caching. Together, disclosure hints and cost-benefit based I/O optimiza- 

tion provide a powerful solution to the problem of delivering the scalable throughput of 

disk arrays to the many important applications with serial storage workloads. 
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